This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngkerinj.1 | |- G = ( 1st ` R ) |
|
| rngkerinj.2 | |- X = ran G |
||
| rngkerinj.3 | |- W = ( GId ` G ) |
||
| rngkerinj.4 | |- J = ( 1st ` S ) |
||
| rngkerinj.5 | |- Y = ran J |
||
| rngkerinj.6 | |- Z = ( GId ` J ) |
||
| Assertion | rngokerinj | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F : X -1-1-> Y <-> ( `' F " { Z } ) = { W } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngkerinj.1 | |- G = ( 1st ` R ) |
|
| 2 | rngkerinj.2 | |- X = ran G |
|
| 3 | rngkerinj.3 | |- W = ( GId ` G ) |
|
| 4 | rngkerinj.4 | |- J = ( 1st ` S ) |
|
| 5 | rngkerinj.5 | |- Y = ran J |
|
| 6 | rngkerinj.6 | |- Z = ( GId ` J ) |
|
| 7 | eqid | |- ( 1st ` R ) = ( 1st ` R ) |
|
| 8 | 7 | rngogrpo | |- ( R e. RingOps -> ( 1st ` R ) e. GrpOp ) |
| 9 | 8 | 3ad2ant1 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( 1st ` R ) e. GrpOp ) |
| 10 | eqid | |- ( 1st ` S ) = ( 1st ` S ) |
|
| 11 | 10 | rngogrpo | |- ( S e. RingOps -> ( 1st ` S ) e. GrpOp ) |
| 12 | 11 | 3ad2ant2 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( 1st ` S ) e. GrpOp ) |
| 13 | 7 10 | rngogrphom | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( ( 1st ` R ) GrpOpHom ( 1st ` S ) ) ) |
| 14 | 1 | rneqi | |- ran G = ran ( 1st ` R ) |
| 15 | 2 14 | eqtri | |- X = ran ( 1st ` R ) |
| 16 | 1 | fveq2i | |- ( GId ` G ) = ( GId ` ( 1st ` R ) ) |
| 17 | 3 16 | eqtri | |- W = ( GId ` ( 1st ` R ) ) |
| 18 | 4 | rneqi | |- ran J = ran ( 1st ` S ) |
| 19 | 5 18 | eqtri | |- Y = ran ( 1st ` S ) |
| 20 | 4 | fveq2i | |- ( GId ` J ) = ( GId ` ( 1st ` S ) ) |
| 21 | 6 20 | eqtri | |- Z = ( GId ` ( 1st ` S ) ) |
| 22 | 15 17 19 21 | grpokerinj | |- ( ( ( 1st ` R ) e. GrpOp /\ ( 1st ` S ) e. GrpOp /\ F e. ( ( 1st ` R ) GrpOpHom ( 1st ` S ) ) ) -> ( F : X -1-1-> Y <-> ( `' F " { Z } ) = { W } ) ) |
| 23 | 9 12 13 22 | syl3anc | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F : X -1-1-> Y <-> ( `' F " { Z } ) = { W } ) ) |