This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism is a function. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghomf.1 | |- G = ( 1st ` R ) |
|
| rnghomf.2 | |- X = ran G |
||
| rnghomf.3 | |- J = ( 1st ` S ) |
||
| rnghomf.4 | |- Y = ran J |
||
| Assertion | rngohomf | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomf.1 | |- G = ( 1st ` R ) |
|
| 2 | rnghomf.2 | |- X = ran G |
|
| 3 | rnghomf.3 | |- J = ( 1st ` S ) |
|
| 4 | rnghomf.4 | |- Y = ran J |
|
| 5 | eqid | |- ( 2nd ` R ) = ( 2nd ` R ) |
|
| 6 | eqid | |- ( GId ` ( 2nd ` R ) ) = ( GId ` ( 2nd ` R ) ) |
|
| 7 | eqid | |- ( 2nd ` S ) = ( 2nd ` S ) |
|
| 8 | eqid | |- ( GId ` ( 2nd ` S ) ) = ( GId ` ( 2nd ` S ) ) |
|
| 9 | 1 5 2 6 3 7 4 8 | isrngohom | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) ) |
| 10 | 9 | biimpa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> Y /\ ( F ` ( GId ` ( 2nd ` R ) ) ) = ( GId ` ( 2nd ` S ) ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x ( 2nd ` R ) y ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` y ) ) ) ) ) |
| 11 | 10 | simp1d | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) |
| 12 | 11 | 3impa | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : X --> Y ) |