This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghommul.1 | |- G = ( 1st ` R ) |
|
| rnghommul.2 | |- X = ran G |
||
| rnghommul.3 | |- H = ( 2nd ` R ) |
||
| rnghommul.4 | |- K = ( 2nd ` S ) |
||
| Assertion | rngohommul | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghommul.1 | |- G = ( 1st ` R ) |
|
| 2 | rnghommul.2 | |- X = ran G |
|
| 3 | rnghommul.3 | |- H = ( 2nd ` R ) |
|
| 4 | rnghommul.4 | |- K = ( 2nd ` S ) |
|
| 5 | eqid | |- ( GId ` H ) = ( GId ` H ) |
|
| 6 | eqid | |- ( 1st ` S ) = ( 1st ` S ) |
|
| 7 | eqid | |- ran ( 1st ` S ) = ran ( 1st ` S ) |
|
| 8 | eqid | |- ( GId ` K ) = ( GId ` K ) |
|
| 9 | 1 3 2 5 6 4 7 8 | isrngohom | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
| 10 | 9 | biimpa | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> ( F : X --> ran ( 1st ` S ) /\ ( F ` ( GId ` H ) ) = ( GId ` K ) /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) |
| 11 | 10 | simp3d | |- ( ( ( R e. RingOps /\ S e. RingOps ) /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) |
| 12 | 11 | 3impa | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) |
| 13 | simpr | |- ( ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) -> ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
|
| 14 | 13 | 2ralimi | |- ( A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) ( 1st ` S ) ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) -> A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 15 | 12 14 | syl | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 16 | fvoveq1 | |- ( x = A -> ( F ` ( x H y ) ) = ( F ` ( A H y ) ) ) |
|
| 17 | fveq2 | |- ( x = A -> ( F ` x ) = ( F ` A ) ) |
|
| 18 | 17 | oveq1d | |- ( x = A -> ( ( F ` x ) K ( F ` y ) ) = ( ( F ` A ) K ( F ` y ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( x = A -> ( ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) <-> ( F ` ( A H y ) ) = ( ( F ` A ) K ( F ` y ) ) ) ) |
| 20 | oveq2 | |- ( y = B -> ( A H y ) = ( A H B ) ) |
|
| 21 | 20 | fveq2d | |- ( y = B -> ( F ` ( A H y ) ) = ( F ` ( A H B ) ) ) |
| 22 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 23 | 22 | oveq2d | |- ( y = B -> ( ( F ` A ) K ( F ` y ) ) = ( ( F ` A ) K ( F ` B ) ) ) |
| 24 | 21 23 | eqeq12d | |- ( y = B -> ( ( F ` ( A H y ) ) = ( ( F ` A ) K ( F ` y ) ) <-> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) ) |
| 25 | 19 24 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) ) |
| 26 | 15 25 | mpan9 | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) |