This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a ring homomorphism from R to S ". (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghomval.1 | |- G = ( 1st ` R ) |
|
| rnghomval.2 | |- H = ( 2nd ` R ) |
||
| rnghomval.3 | |- X = ran G |
||
| rnghomval.4 | |- U = ( GId ` H ) |
||
| rnghomval.5 | |- J = ( 1st ` S ) |
||
| rnghomval.6 | |- K = ( 2nd ` S ) |
||
| rnghomval.7 | |- Y = ran J |
||
| rnghomval.8 | |- V = ( GId ` K ) |
||
| Assertion | isrngohom | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomval.1 | |- G = ( 1st ` R ) |
|
| 2 | rnghomval.2 | |- H = ( 2nd ` R ) |
|
| 3 | rnghomval.3 | |- X = ran G |
|
| 4 | rnghomval.4 | |- U = ( GId ` H ) |
|
| 5 | rnghomval.5 | |- J = ( 1st ` S ) |
|
| 6 | rnghomval.6 | |- K = ( 2nd ` S ) |
|
| 7 | rnghomval.7 | |- Y = ran J |
|
| 8 | rnghomval.8 | |- V = ( GId ` K ) |
|
| 9 | 1 2 3 4 5 6 7 8 | rngohomval | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( R RingOpsHom S ) = { f e. ( Y ^m X ) | ( ( f ` U ) = V /\ A. x e. X A. y e. X ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) ) } ) |
| 10 | 9 | eleq2d | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> F e. { f e. ( Y ^m X ) | ( ( f ` U ) = V /\ A. x e. X A. y e. X ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) ) } ) ) |
| 11 | 5 | fvexi | |- J e. _V |
| 12 | 11 | rnex | |- ran J e. _V |
| 13 | 7 12 | eqeltri | |- Y e. _V |
| 14 | 1 | fvexi | |- G e. _V |
| 15 | 14 | rnex | |- ran G e. _V |
| 16 | 3 15 | eqeltri | |- X e. _V |
| 17 | 13 16 | elmap | |- ( F e. ( Y ^m X ) <-> F : X --> Y ) |
| 18 | 17 | anbi1i | |- ( ( F e. ( Y ^m X ) /\ ( ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) <-> ( F : X --> Y /\ ( ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
| 19 | fveq1 | |- ( f = F -> ( f ` U ) = ( F ` U ) ) |
|
| 20 | 19 | eqeq1d | |- ( f = F -> ( ( f ` U ) = V <-> ( F ` U ) = V ) ) |
| 21 | fveq1 | |- ( f = F -> ( f ` ( x G y ) ) = ( F ` ( x G y ) ) ) |
|
| 22 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 23 | fveq1 | |- ( f = F -> ( f ` y ) = ( F ` y ) ) |
|
| 24 | 22 23 | oveq12d | |- ( f = F -> ( ( f ` x ) J ( f ` y ) ) = ( ( F ` x ) J ( F ` y ) ) ) |
| 25 | 21 24 | eqeq12d | |- ( f = F -> ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) <-> ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) ) ) |
| 26 | fveq1 | |- ( f = F -> ( f ` ( x H y ) ) = ( F ` ( x H y ) ) ) |
|
| 27 | 22 23 | oveq12d | |- ( f = F -> ( ( f ` x ) K ( f ` y ) ) = ( ( F ` x ) K ( F ` y ) ) ) |
| 28 | 26 27 | eqeq12d | |- ( f = F -> ( ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) <-> ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) |
| 29 | 25 28 | anbi12d | |- ( f = F -> ( ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) <-> ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) |
| 30 | 29 | 2ralbidv | |- ( f = F -> ( A. x e. X A. y e. X ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) <-> A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) |
| 31 | 20 30 | anbi12d | |- ( f = F -> ( ( ( f ` U ) = V /\ A. x e. X A. y e. X ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) ) <-> ( ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
| 32 | 31 | elrab | |- ( F e. { f e. ( Y ^m X ) | ( ( f ` U ) = V /\ A. x e. X A. y e. X ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) ) } <-> ( F e. ( Y ^m X ) /\ ( ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
| 33 | 3anass | |- ( ( F : X --> Y /\ ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) <-> ( F : X --> Y /\ ( ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |
|
| 34 | 18 32 33 | 3bitr4i | |- ( F e. { f e. ( Y ^m X ) | ( ( f ` U ) = V /\ A. x e. X A. y e. X ( ( f ` ( x G y ) ) = ( ( f ` x ) J ( f ` y ) ) /\ ( f ` ( x H y ) ) = ( ( f ` x ) K ( f ` y ) ) ) ) } <-> ( F : X --> Y /\ ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) |
| 35 | 10 34 | bitrdi | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( R RingOpsHom S ) <-> ( F : X --> Y /\ ( F ` U ) = V /\ A. x e. X A. y e. X ( ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) /\ ( F ` ( x H y ) ) = ( ( F ` x ) K ( F ` y ) ) ) ) ) ) |