This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism preserves 0 . (Contributed by Jeff Madsen, 2-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghom0.1 | |- G = ( 1st ` R ) |
|
| rnghom0.2 | |- Z = ( GId ` G ) |
||
| rnghom0.3 | |- J = ( 1st ` S ) |
||
| rnghom0.4 | |- W = ( GId ` J ) |
||
| Assertion | rngohom0 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` Z ) = W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghom0.1 | |- G = ( 1st ` R ) |
|
| 2 | rnghom0.2 | |- Z = ( GId ` G ) |
|
| 3 | rnghom0.3 | |- J = ( 1st ` S ) |
|
| 4 | rnghom0.4 | |- W = ( GId ` J ) |
|
| 5 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 6 | 5 | 3ad2ant1 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) |
| 7 | 3 | rngogrpo | |- ( S e. RingOps -> J e. GrpOp ) |
| 8 | 7 | 3ad2ant2 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) |
| 9 | 1 3 | rngogrphom | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) |
| 10 | 2 4 | ghomidOLD | |- ( ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) -> ( F ` Z ) = W ) |
| 11 | 6 8 9 10 | syl3anc | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` Z ) = W ) |