This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism is a group homomorphism. (Contributed by Jeff Madsen, 2-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnggrphom.1 | |- G = ( 1st ` R ) |
|
| rnggrphom.2 | |- J = ( 1st ` S ) |
||
| Assertion | rngogrphom | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnggrphom.1 | |- G = ( 1st ` R ) |
|
| 2 | rnggrphom.2 | |- J = ( 1st ` S ) |
|
| 3 | eqid | |- ran G = ran G |
|
| 4 | eqid | |- ran J = ran J |
|
| 5 | 1 3 2 4 | rngohomf | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran G --> ran J ) |
| 6 | 1 3 2 | rngohomadd | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( F ` ( x G y ) ) = ( ( F ` x ) J ( F ` y ) ) ) |
| 7 | 6 | eqcomd | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran G /\ y e. ran G ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) |
| 8 | 7 | ralrimivva | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) |
| 9 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 10 | 2 | rngogrpo | |- ( S e. RingOps -> J e. GrpOp ) |
| 11 | 3 4 | elghomOLD | |- ( ( G e. GrpOp /\ J e. GrpOp ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 12 | 9 10 11 | syl2an | |- ( ( R e. RingOps /\ S e. RingOps ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 13 | 12 | 3adant3 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F e. ( G GrpOpHom J ) <-> ( F : ran G --> ran J /\ A. x e. ran G A. y e. ran G ( ( F ` x ) J ( F ` y ) ) = ( F ` ( x G y ) ) ) ) ) |
| 14 | 5 8 13 | mpbir2and | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) |