This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ring homomorphisms preserve subtraction. (Contributed by Jeff Madsen, 15-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghomsub.1 | |- G = ( 1st ` R ) |
|
| rnghomsub.2 | |- X = ran G |
||
| rnghomsub.3 | |- H = ( /g ` G ) |
||
| rnghomsub.4 | |- J = ( 1st ` S ) |
||
| rnghomsub.5 | |- K = ( /g ` J ) |
||
| Assertion | rngohomsub | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghomsub.1 | |- G = ( 1st ` R ) |
|
| 2 | rnghomsub.2 | |- X = ran G |
|
| 3 | rnghomsub.3 | |- H = ( /g ` G ) |
|
| 4 | rnghomsub.4 | |- J = ( 1st ` S ) |
|
| 5 | rnghomsub.5 | |- K = ( /g ` J ) |
|
| 6 | 1 | rngogrpo | |- ( R e. RingOps -> G e. GrpOp ) |
| 7 | 6 | 3ad2ant1 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> G e. GrpOp ) |
| 8 | 4 | rngogrpo | |- ( S e. RingOps -> J e. GrpOp ) |
| 9 | 8 | 3ad2ant2 | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> J e. GrpOp ) |
| 10 | 1 4 | rngogrphom | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F e. ( G GrpOpHom J ) ) |
| 11 | 7 9 10 | 3jca | |- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) ) |
| 12 | 2 3 5 | ghomdiv | |- ( ( ( G e. GrpOp /\ J e. GrpOp /\ F e. ( G GrpOpHom J ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) |
| 13 | 11 12 | sylan | |- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( A e. X /\ B e. X ) ) -> ( F ` ( A H B ) ) = ( ( F ` A ) K ( F ` B ) ) ) |