This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism preserves 0 . (Contributed by Jeff Madsen, 2-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghom0.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| rnghom0.2 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| rnghom0.3 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | ||
| rnghom0.4 | ⊢ 𝑊 = ( GId ‘ 𝐽 ) | ||
| Assertion | rngohom0 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → ( 𝐹 ‘ 𝑍 ) = 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghom0.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | rnghom0.2 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 3 | rnghom0.3 | ⊢ 𝐽 = ( 1st ‘ 𝑆 ) | |
| 4 | rnghom0.4 | ⊢ 𝑊 = ( GId ‘ 𝐽 ) | |
| 5 | 1 | rngogrpo | ⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → 𝐺 ∈ GrpOp ) |
| 7 | 3 | rngogrpo | ⊢ ( 𝑆 ∈ RingOps → 𝐽 ∈ GrpOp ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → 𝐽 ∈ GrpOp ) |
| 9 | 1 3 | rngogrphom | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) |
| 10 | 2 4 | ghomidOLD | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐽 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐽 ) ) → ( 𝐹 ‘ 𝑍 ) = 𝑊 ) |
| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ ( 𝑅 RingOpsHom 𝑆 ) ) → ( 𝐹 ‘ 𝑍 ) = 𝑊 ) |