This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring homomorphism preserves 0 . (Contributed by Jeff Madsen, 2-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghom0.1 | ||
| rnghom0.2 | |||
| rnghom0.3 | |||
| rnghom0.4 | |||
| Assertion | rngohom0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghom0.1 | ||
| 2 | rnghom0.2 | ||
| 3 | rnghom0.3 | ||
| 4 | rnghom0.4 | ||
| 5 | 1 | rngogrpo | |
| 6 | 5 | 3ad2ant1 | |
| 7 | 3 | rngogrpo | |
| 8 | 7 | 3ad2ant2 | |
| 9 | 1 3 | rngogrphom | |
| 10 | 2 4 | ghomidOLD | |
| 11 | 6 8 9 10 | syl3anc |