This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcsect.c | |- C = ( RngCat ` U ) |
|
| rngcsect.b | |- B = ( Base ` C ) |
||
| rngcsect.u | |- ( ph -> U e. V ) |
||
| rngcsect.x | |- ( ph -> X e. B ) |
||
| rngcsect.y | |- ( ph -> Y e. B ) |
||
| rngciso.n | |- I = ( Iso ` C ) |
||
| Assertion | rngciso | |- ( ph -> ( F e. ( X I Y ) <-> F e. ( X RngIso Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcsect.c | |- C = ( RngCat ` U ) |
|
| 2 | rngcsect.b | |- B = ( Base ` C ) |
|
| 3 | rngcsect.u | |- ( ph -> U e. V ) |
|
| 4 | rngcsect.x | |- ( ph -> X e. B ) |
|
| 5 | rngcsect.y | |- ( ph -> Y e. B ) |
|
| 6 | rngciso.n | |- I = ( Iso ` C ) |
|
| 7 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 8 | 1 | rngccat | |- ( U e. V -> C e. Cat ) |
| 9 | 3 8 | syl | |- ( ph -> C e. Cat ) |
| 10 | 2 7 9 4 5 6 | isoval | |- ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) |
| 11 | 10 | eleq2d | |- ( ph -> ( F e. ( X I Y ) <-> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 12 | 2 7 9 4 5 | invfun | |- ( ph -> Fun ( X ( Inv ` C ) Y ) ) |
| 13 | funfvbrb | |- ( Fun ( X ( Inv ` C ) Y ) -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
|
| 14 | 12 13 | syl | |- ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) ) ) |
| 15 | 1 2 3 4 5 7 | rngcinv | |- ( ph -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) <-> ( F e. ( X RngIso Y ) /\ ( ( X ( Inv ` C ) Y ) ` F ) = `' F ) ) ) |
| 16 | simpl | |- ( ( F e. ( X RngIso Y ) /\ ( ( X ( Inv ` C ) Y ) ` F ) = `' F ) -> F e. ( X RngIso Y ) ) |
|
| 17 | 15 16 | biimtrdi | |- ( ph -> ( F ( X ( Inv ` C ) Y ) ( ( X ( Inv ` C ) Y ) ` F ) -> F e. ( X RngIso Y ) ) ) |
| 18 | 14 17 | sylbid | |- ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) -> F e. ( X RngIso Y ) ) ) |
| 19 | eqid | |- `' F = `' F |
|
| 20 | 1 2 3 4 5 7 | rngcinv | |- ( ph -> ( F ( X ( Inv ` C ) Y ) `' F <-> ( F e. ( X RngIso Y ) /\ `' F = `' F ) ) ) |
| 21 | funrel | |- ( Fun ( X ( Inv ` C ) Y ) -> Rel ( X ( Inv ` C ) Y ) ) |
|
| 22 | 12 21 | syl | |- ( ph -> Rel ( X ( Inv ` C ) Y ) ) |
| 23 | releldm | |- ( ( Rel ( X ( Inv ` C ) Y ) /\ F ( X ( Inv ` C ) Y ) `' F ) -> F e. dom ( X ( Inv ` C ) Y ) ) |
|
| 24 | 23 | ex | |- ( Rel ( X ( Inv ` C ) Y ) -> ( F ( X ( Inv ` C ) Y ) `' F -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 25 | 22 24 | syl | |- ( ph -> ( F ( X ( Inv ` C ) Y ) `' F -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 26 | 20 25 | sylbird | |- ( ph -> ( ( F e. ( X RngIso Y ) /\ `' F = `' F ) -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 27 | 19 26 | mpan2i | |- ( ph -> ( F e. ( X RngIso Y ) -> F e. dom ( X ( Inv ` C ) Y ) ) ) |
| 28 | 18 27 | impbid | |- ( ph -> ( F e. dom ( X ( Inv ` C ) Y ) <-> F e. ( X RngIso Y ) ) ) |
| 29 | 11 28 | bitrd | |- ( ph -> ( F e. ( X I Y ) <-> F e. ( X RngIso Y ) ) ) |