This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism in the category of non-unital rings is a bijection. (Contributed by AV, 28-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcsect.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rngcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| rngcsect.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rngcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rngcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| rngciso.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| Assertion | rngciso | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcsect.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rngcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | rngcsect.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | rngcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | rngcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | rngciso.n | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) | |
| 8 | 1 | rngccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 10 | 2 7 9 4 5 6 | isoval | ⊢ ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 11 | 10 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 12 | 2 7 9 4 5 | invfun | ⊢ ( 𝜑 → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 13 | funfvbrb | ⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) |
| 15 | 1 2 3 4 5 7 | rngcinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = ◡ 𝐹 ) ) ) |
| 16 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) = ◡ 𝐹 ) → 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ) | |
| 17 | 15 16 | biimtrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) → 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ) ) |
| 18 | 14 17 | sylbid | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ) ) |
| 19 | eqid | ⊢ ◡ 𝐹 = ◡ 𝐹 | |
| 20 | 1 2 3 4 5 7 | rngcinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 ↔ ( 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ∧ ◡ 𝐹 = ◡ 𝐹 ) ) ) |
| 21 | funrel | ⊢ ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) | |
| 22 | 12 21 | syl | ⊢ ( 𝜑 → Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) |
| 23 | releldm | ⊢ ( ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) | |
| 24 | 23 | ex | ⊢ ( Rel ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 25 | 22 24 | syl | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 26 | 20 25 | sylbird | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ∧ ◡ 𝐹 = ◡ 𝐹 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 27 | 19 26 | mpan2i | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) ) |
| 28 | 18 27 | impbid | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ) ) |
| 29 | 11 28 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RngIso 𝑌 ) ) ) |