This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by Mario Carneiro, 3-Feb-2014) (Revised by Mario Carneiro, 20-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimsqz.d | |- ( ph -> D e. RR ) |
|
| rlimsqz.m | |- ( ph -> M e. RR ) |
||
| rlimsqz.l | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
||
| rlimsqz.b | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| rlimsqz.c | |- ( ( ph /\ x e. A ) -> C e. RR ) |
||
| rlimsqz2.1 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> C <_ B ) |
||
| rlimsqz2.2 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> D <_ C ) |
||
| Assertion | rlimsqz2 | |- ( ph -> ( x e. A |-> C ) ~~>r D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimsqz.d | |- ( ph -> D e. RR ) |
|
| 2 | rlimsqz.m | |- ( ph -> M e. RR ) |
|
| 3 | rlimsqz.l | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
|
| 4 | rlimsqz.b | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 5 | rlimsqz.c | |- ( ( ph /\ x e. A ) -> C e. RR ) |
|
| 6 | rlimsqz2.1 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> C <_ B ) |
|
| 7 | rlimsqz2.2 | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> D <_ C ) |
|
| 8 | 1 | recnd | |- ( ph -> D e. CC ) |
| 9 | 4 | recnd | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 10 | 5 | recnd | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 11 | 5 | adantrr | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> C e. RR ) |
| 12 | 4 | adantrr | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> B e. RR ) |
| 13 | 1 | adantr | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> D e. RR ) |
| 14 | 11 12 13 6 | lesub1dd | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( C - D ) <_ ( B - D ) ) |
| 15 | 13 11 7 | abssubge0d | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( C - D ) ) = ( C - D ) ) |
| 16 | 13 11 12 7 6 | letrd | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> D <_ B ) |
| 17 | 13 12 16 | abssubge0d | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( B - D ) ) = ( B - D ) ) |
| 18 | 14 15 17 | 3brtr4d | |- ( ( ph /\ ( x e. A /\ M <_ x ) ) -> ( abs ` ( C - D ) ) <_ ( abs ` ( B - D ) ) ) |
| 19 | 2 8 3 9 10 18 | rlimsqzlem | |- ( ph -> ( x e. A |-> C ) ~~>r D ) |