This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimeq.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| rlimeq.2 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
||
| rlimeq.3 | |- ( ph -> D e. RR ) |
||
| rlimeq.4 | |- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) |
||
| Assertion | o1eq | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimeq.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 2 | rlimeq.2 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
|
| 3 | rlimeq.3 | |- ( ph -> D e. RR ) |
|
| 4 | rlimeq.4 | |- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) |
|
| 5 | 1 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR ) |
| 6 | 2 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` C ) e. RR ) |
| 7 | 4 | fveq2d | |- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> ( abs ` B ) = ( abs ` C ) ) |
| 8 | 5 6 3 7 | lo1eq | |- ( ph -> ( ( x e. A |-> ( abs ` B ) ) e. <_O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) |
| 9 | 1 | lo1o12 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
| 10 | 2 | lo1o12 | |- ( ph -> ( ( x e. A |-> C ) e. O(1) <-> ( x e. A |-> ( abs ` C ) ) e. <_O(1) ) ) |
| 11 | 8 9 10 | 3bitr4d | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> C ) e. O(1) ) ) |