This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | en2prd.1 | |- ( ph -> A e. V ) |
|
| en2prd.2 | |- ( ph -> B e. W ) |
||
| en2prd.3 | |- ( ph -> C e. X ) |
||
| en2prd.4 | |- ( ph -> D e. Y ) |
||
| en2prd.5 | |- ( ph -> A =/= B ) |
||
| en2prd.6 | |- ( ph -> C =/= D ) |
||
| Assertion | en2prd | |- ( ph -> { A , B } ~~ { C , D } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2prd.1 | |- ( ph -> A e. V ) |
|
| 2 | en2prd.2 | |- ( ph -> B e. W ) |
|
| 3 | en2prd.3 | |- ( ph -> C e. X ) |
|
| 4 | en2prd.4 | |- ( ph -> D e. Y ) |
|
| 5 | en2prd.5 | |- ( ph -> A =/= B ) |
|
| 6 | en2prd.6 | |- ( ph -> C =/= D ) |
|
| 7 | prex | |- { <. A , C >. , <. B , D >. } e. _V |
|
| 8 | f1oprg | |- ( ( ( A e. V /\ C e. X ) /\ ( B e. W /\ D e. Y ) ) -> ( ( A =/= B /\ C =/= D ) -> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) ) |
|
| 9 | 1 3 2 4 8 | syl22anc | |- ( ph -> ( ( A =/= B /\ C =/= D ) -> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) ) |
| 10 | 5 6 9 | mp2and | |- ( ph -> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) |
| 11 | f1oeq1 | |- ( f = { <. A , C >. , <. B , D >. } -> ( f : { A , B } -1-1-onto-> { C , D } <-> { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } ) ) |
|
| 12 | 11 | spcegv | |- ( { <. A , C >. , <. B , D >. } e. _V -> ( { <. A , C >. , <. B , D >. } : { A , B } -1-1-onto-> { C , D } -> E. f f : { A , B } -1-1-onto-> { C , D } ) ) |
| 13 | 7 10 12 | mpsyl | |- ( ph -> E. f f : { A , B } -1-1-onto-> { C , D } ) |
| 14 | prex | |- { A , B } e. _V |
|
| 15 | prex | |- { C , D } e. _V |
|
| 16 | breng | |- ( ( { A , B } e. _V /\ { C , D } e. _V ) -> ( { A , B } ~~ { C , D } <-> E. f f : { A , B } -1-1-onto-> { C , D } ) ) |
|
| 17 | 14 15 16 | mp2an | |- ( { A , B } ~~ { C , D } <-> E. f f : { A , B } -1-1-onto-> { C , D } ) |
| 18 | 13 17 | sylibr | |- ( ph -> { A , B } ~~ { C , D } ) |