This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the set of finite subsets of A is the set of finite subsets of B . (Contributed by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restfpw | |- ( ( A e. V /\ B C_ A ) -> ( ( ~P A i^i Fin ) |`t B ) = ( ~P B i^i Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ B C_ A ) -> ~P A e. _V ) |
| 3 | inex1g | |- ( ~P A e. _V -> ( ~P A i^i Fin ) e. _V ) |
|
| 4 | 2 3 | syl | |- ( ( A e. V /\ B C_ A ) -> ( ~P A i^i Fin ) e. _V ) |
| 5 | ssexg | |- ( ( B C_ A /\ A e. V ) -> B e. _V ) |
|
| 6 | 5 | ancoms | |- ( ( A e. V /\ B C_ A ) -> B e. _V ) |
| 7 | restval | |- ( ( ( ~P A i^i Fin ) e. _V /\ B e. _V ) -> ( ( ~P A i^i Fin ) |`t B ) = ran ( x e. ( ~P A i^i Fin ) |-> ( x i^i B ) ) ) |
|
| 8 | 4 6 7 | syl2anc | |- ( ( A e. V /\ B C_ A ) -> ( ( ~P A i^i Fin ) |`t B ) = ran ( x e. ( ~P A i^i Fin ) |-> ( x i^i B ) ) ) |
| 9 | inss2 | |- ( x i^i B ) C_ B |
|
| 10 | 9 | a1i | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P A i^i Fin ) ) -> ( x i^i B ) C_ B ) |
| 11 | elinel2 | |- ( x e. ( ~P A i^i Fin ) -> x e. Fin ) |
|
| 12 | 11 | adantl | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) |
| 13 | inss1 | |- ( x i^i B ) C_ x |
|
| 14 | ssfi | |- ( ( x e. Fin /\ ( x i^i B ) C_ x ) -> ( x i^i B ) e. Fin ) |
|
| 15 | 12 13 14 | sylancl | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P A i^i Fin ) ) -> ( x i^i B ) e. Fin ) |
| 16 | elfpw | |- ( ( x i^i B ) e. ( ~P B i^i Fin ) <-> ( ( x i^i B ) C_ B /\ ( x i^i B ) e. Fin ) ) |
|
| 17 | 10 15 16 | sylanbrc | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P A i^i Fin ) ) -> ( x i^i B ) e. ( ~P B i^i Fin ) ) |
| 18 | 17 | fmpttd | |- ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A i^i Fin ) |-> ( x i^i B ) ) : ( ~P A i^i Fin ) --> ( ~P B i^i Fin ) ) |
| 19 | 18 | frnd | |- ( ( A e. V /\ B C_ A ) -> ran ( x e. ( ~P A i^i Fin ) |-> ( x i^i B ) ) C_ ( ~P B i^i Fin ) ) |
| 20 | 8 19 | eqsstrd | |- ( ( A e. V /\ B C_ A ) -> ( ( ~P A i^i Fin ) |`t B ) C_ ( ~P B i^i Fin ) ) |
| 21 | elfpw | |- ( x e. ( ~P B i^i Fin ) <-> ( x C_ B /\ x e. Fin ) ) |
|
| 22 | 21 | simplbi | |- ( x e. ( ~P B i^i Fin ) -> x C_ B ) |
| 23 | 22 | adantl | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> x C_ B ) |
| 24 | dfss2 | |- ( x C_ B <-> ( x i^i B ) = x ) |
|
| 25 | 23 24 | sylib | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> ( x i^i B ) = x ) |
| 26 | 4 | adantr | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> ( ~P A i^i Fin ) e. _V ) |
| 27 | 6 | adantr | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> B e. _V ) |
| 28 | simplr | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> B C_ A ) |
|
| 29 | 23 28 | sstrd | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> x C_ A ) |
| 30 | elinel2 | |- ( x e. ( ~P B i^i Fin ) -> x e. Fin ) |
|
| 31 | 30 | adantl | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> x e. Fin ) |
| 32 | elfpw | |- ( x e. ( ~P A i^i Fin ) <-> ( x C_ A /\ x e. Fin ) ) |
|
| 33 | 29 31 32 | sylanbrc | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> x e. ( ~P A i^i Fin ) ) |
| 34 | elrestr | |- ( ( ( ~P A i^i Fin ) e. _V /\ B e. _V /\ x e. ( ~P A i^i Fin ) ) -> ( x i^i B ) e. ( ( ~P A i^i Fin ) |`t B ) ) |
|
| 35 | 26 27 33 34 | syl3anc | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> ( x i^i B ) e. ( ( ~P A i^i Fin ) |`t B ) ) |
| 36 | 25 35 | eqeltrrd | |- ( ( ( A e. V /\ B C_ A ) /\ x e. ( ~P B i^i Fin ) ) -> x e. ( ( ~P A i^i Fin ) |`t B ) ) |
| 37 | 20 36 | eqelssd | |- ( ( A e. V /\ B C_ A ) -> ( ( ~P A i^i Fin ) |`t B ) = ( ~P B i^i Fin ) ) |