This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0rest | |- ( (/) |`t A ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | restval | |- ( ( (/) e. _V /\ A e. _V ) -> ( (/) |`t A ) = ran ( x e. (/) |-> ( x i^i A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. _V -> ( (/) |`t A ) = ran ( x e. (/) |-> ( x i^i A ) ) ) |
| 4 | mpt0 | |- ( x e. (/) |-> ( x i^i A ) ) = (/) |
|
| 5 | 4 | rneqi | |- ran ( x e. (/) |-> ( x i^i A ) ) = ran (/) |
| 6 | rn0 | |- ran (/) = (/) |
|
| 7 | 5 6 | eqtri | |- ran ( x e. (/) |-> ( x i^i A ) ) = (/) |
| 8 | 3 7 | eqtrdi | |- ( A e. _V -> ( (/) |`t A ) = (/) ) |
| 9 | relxp | |- Rel ( _V X. _V ) |
|
| 10 | restfn | |- |`t Fn ( _V X. _V ) |
|
| 11 | 10 | fndmi | |- dom |`t = ( _V X. _V ) |
| 12 | 11 | releqi | |- ( Rel dom |`t <-> Rel ( _V X. _V ) ) |
| 13 | 9 12 | mpbir | |- Rel dom |`t |
| 14 | 13 | ovprc2 | |- ( -. A e. _V -> ( (/) |`t A ) = (/) ) |
| 15 | 8 14 | pm2.61i | |- ( (/) |`t A ) = (/) |