This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | |- S = ( I mPwSer R ) |
|
| resspsr.h | |- H = ( R |`s T ) |
||
| resspsr.u | |- U = ( I mPwSer H ) |
||
| resspsr.b | |- B = ( Base ` U ) |
||
| resspsr.p | |- P = ( S |`s B ) |
||
| resspsr.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| Assertion | resspsrvsca | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | |- S = ( I mPwSer R ) |
|
| 2 | resspsr.h | |- H = ( R |`s T ) |
|
| 3 | resspsr.u | |- U = ( I mPwSer H ) |
|
| 4 | resspsr.b | |- B = ( Base ` U ) |
|
| 5 | resspsr.p | |- P = ( S |`s B ) |
|
| 6 | resspsr.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | eqid | |- ( .s ` U ) = ( .s ` U ) |
|
| 8 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 9 | eqid | |- ( .r ` H ) = ( .r ` H ) |
|
| 10 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 11 | simprl | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. T ) |
|
| 12 | 6 | adantr | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T e. ( SubRing ` R ) ) |
| 13 | 2 | subrgbas | |- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
| 14 | 12 13 | syl | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T = ( Base ` H ) ) |
| 15 | 11 14 | eleqtrd | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. ( Base ` H ) ) |
| 16 | simprr | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> Y e. B ) |
|
| 17 | 3 7 8 4 9 10 15 16 | psrvsca | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) |
| 18 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 19 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 20 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 21 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 22 | 19 | subrgss | |- ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) |
| 23 | 12 22 | syl | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T C_ ( Base ` R ) ) |
| 24 | 23 11 | sseldd | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. ( Base ` R ) ) |
| 25 | 1 2 3 4 5 6 | resspsrbas | |- ( ph -> B = ( Base ` P ) ) |
| 26 | 5 20 | ressbasss | |- ( Base ` P ) C_ ( Base ` S ) |
| 27 | 25 26 | eqsstrdi | |- ( ph -> B C_ ( Base ` S ) ) |
| 28 | 27 | adantr | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> B C_ ( Base ` S ) ) |
| 29 | 28 16 | sseldd | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> Y e. ( Base ` S ) ) |
| 30 | 1 18 19 20 21 10 24 29 | psrvsca | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) Y ) ) |
| 31 | 2 21 | ressmulr | |- ( T e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` H ) ) |
| 32 | ofeq | |- ( ( .r ` R ) = ( .r ` H ) -> oF ( .r ` R ) = oF ( .r ` H ) ) |
|
| 33 | 12 31 32 | 3syl | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> oF ( .r ` R ) = oF ( .r ` H ) ) |
| 34 | 33 | oveqd | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) |
| 35 | 30 34 | eqtrd | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) |
| 36 | 4 | fvexi | |- B e. _V |
| 37 | 5 18 | ressvsca | |- ( B e. _V -> ( .s ` S ) = ( .s ` P ) ) |
| 38 | 36 37 | mp1i | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( .s ` S ) = ( .s ` P ) ) |
| 39 | 38 | oveqd | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( X ( .s ` P ) Y ) ) |
| 40 | 17 35 39 | 3eqtr2d | |- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |