This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulgnn.1 | |- H = ( G |`s A ) |
|
| ressmulgnn.2 | |- A C_ ( Base ` G ) |
||
| ressmulgnn.3 | |- .* = ( .g ` G ) |
||
| ressmulgnn.4 | |- I = ( invg ` G ) |
||
| ressmulgnn0.4 | |- ( 0g ` G ) = ( 0g ` H ) |
||
| Assertion | ressmulgnn0 | |- ( ( N e. NN0 /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnn.1 | |- H = ( G |`s A ) |
|
| 2 | ressmulgnn.2 | |- A C_ ( Base ` G ) |
|
| 3 | ressmulgnn.3 | |- .* = ( .g ` G ) |
|
| 4 | ressmulgnn.4 | |- I = ( invg ` G ) |
|
| 5 | ressmulgnn0.4 | |- ( 0g ` G ) = ( 0g ` H ) |
|
| 6 | simpr | |- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> N e. NN ) |
|
| 7 | simplr | |- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> X e. A ) |
|
| 8 | 1 2 3 4 | ressmulgnn | |- ( ( N e. NN /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| 9 | 6 7 8 | syl2anc | |- ( ( ( N e. NN0 /\ X e. A ) /\ N e. NN ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| 10 | simplr | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> X e. A ) |
|
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | 1 11 | ressbas2 | |- ( A C_ ( Base ` G ) -> A = ( Base ` H ) ) |
| 13 | 2 12 | ax-mp | |- A = ( Base ` H ) |
| 14 | eqid | |- ( .g ` H ) = ( .g ` H ) |
|
| 15 | 13 5 14 | mulg0 | |- ( X e. A -> ( 0 ( .g ` H ) X ) = ( 0g ` G ) ) |
| 16 | 10 15 | syl | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( 0 ( .g ` H ) X ) = ( 0g ` G ) ) |
| 17 | simpr | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> N = 0 ) |
|
| 18 | 17 | oveq1d | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( 0 ( .g ` H ) X ) ) |
| 19 | 2 10 | sselid | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> X e. ( Base ` G ) ) |
| 20 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 21 | 11 20 3 | mulg0 | |- ( X e. ( Base ` G ) -> ( 0 .* X ) = ( 0g ` G ) ) |
| 22 | 19 21 | syl | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( 0 .* X ) = ( 0g ` G ) ) |
| 23 | 16 18 22 | 3eqtr4d | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( 0 .* X ) ) |
| 24 | 17 | oveq1d | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N .* X ) = ( 0 .* X ) ) |
| 25 | 23 24 | eqtr4d | |- ( ( ( N e. NN0 /\ X e. A ) /\ N = 0 ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |
| 26 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 27 | 26 | biimpi | |- ( N e. NN0 -> ( N e. NN \/ N = 0 ) ) |
| 28 | 27 | adantr | |- ( ( N e. NN0 /\ X e. A ) -> ( N e. NN \/ N = 0 ) ) |
| 29 | 9 25 28 | mpjaodan | |- ( ( N e. NN0 /\ X e. A ) -> ( N ( .g ` H ) X ) = ( N .* X ) ) |