This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Values for the group multiple function in a restricted structure, a deduction version. (Contributed by metakunt, 14-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulgnnd.1 | |- H = ( G |`s A ) |
|
| ressmulgnnd.2 | |- ( ph -> A C_ ( Base ` G ) ) |
||
| ressmulgnnd.3 | |- ( ph -> X e. A ) |
||
| ressmulgnnd.4 | |- ( ph -> N e. NN ) |
||
| Assertion | ressmulgnnd | |- ( ph -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulgnnd.1 | |- H = ( G |`s A ) |
|
| 2 | ressmulgnnd.2 | |- ( ph -> A C_ ( Base ` G ) ) |
|
| 3 | ressmulgnnd.3 | |- ( ph -> X e. A ) |
|
| 4 | ressmulgnnd.4 | |- ( ph -> N e. NN ) |
|
| 5 | 4 | nngt0d | |- ( ph -> 0 < N ) |
| 6 | 4 | adantr | |- ( ( ph /\ 0 < N ) -> N e. NN ) |
| 7 | 3 | adantr | |- ( ( ph /\ 0 < N ) -> X e. A ) |
| 8 | eqid | |- ( G |`s A ) = ( G |`s A ) |
|
| 9 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 10 | 8 9 | ressbas2 | |- ( A C_ ( Base ` G ) -> A = ( Base ` ( G |`s A ) ) ) |
| 11 | 2 10 | syl | |- ( ph -> A = ( Base ` ( G |`s A ) ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ 0 < N ) -> A = ( Base ` ( G |`s A ) ) ) |
| 13 | eqcom | |- ( H = ( G |`s A ) <-> ( G |`s A ) = H ) |
|
| 14 | 1 13 | mpbi | |- ( G |`s A ) = H |
| 15 | 14 | fveq2i | |- ( Base ` ( G |`s A ) ) = ( Base ` H ) |
| 16 | 15 | a1i | |- ( ( ph /\ 0 < N ) -> ( Base ` ( G |`s A ) ) = ( Base ` H ) ) |
| 17 | 12 16 | eqtrd | |- ( ( ph /\ 0 < N ) -> A = ( Base ` H ) ) |
| 18 | 7 17 | eleqtrd | |- ( ( ph /\ 0 < N ) -> X e. ( Base ` H ) ) |
| 19 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 20 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 21 | eqid | |- ( .g ` H ) = ( .g ` H ) |
|
| 22 | eqid | |- seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) |
|
| 23 | 19 20 21 22 | mulgnn | |- ( ( N e. NN /\ X e. ( Base ` H ) ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 24 | 6 18 23 | syl2anc | |- ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) ) |
| 25 | fvexd | |- ( ph -> ( Base ` G ) e. _V ) |
|
| 26 | 25 2 | ssexd | |- ( ph -> A e. _V ) |
| 27 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 28 | 1 27 | ressplusg | |- ( A e. _V -> ( +g ` G ) = ( +g ` H ) ) |
| 29 | 26 28 | syl | |- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
| 30 | 29 | eqcomd | |- ( ph -> ( +g ` H ) = ( +g ` G ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ 0 < N ) -> ( +g ` H ) = ( +g ` G ) ) |
| 32 | 31 | seqeq2d | |- ( ( ph /\ 0 < N ) -> seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ) |
| 33 | 32 | fveq1d | |- ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` H ) , ( NN X. { X } ) ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 34 | 2 3 | sseldd | |- ( ph -> X e. ( Base ` G ) ) |
| 35 | 34 | adantr | |- ( ( ph /\ 0 < N ) -> X e. ( Base ` G ) ) |
| 36 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 37 | eqid | |- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
|
| 38 | 9 27 36 37 | mulgnn | |- ( ( N e. NN /\ X e. ( Base ` G ) ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 39 | 6 35 38 | syl2anc | |- ( ( ph /\ 0 < N ) -> ( N ( .g ` G ) X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 40 | 39 | eqcomd | |- ( ( ph /\ 0 < N ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) = ( N ( .g ` G ) X ) ) |
| 41 | 24 33 40 | 3eqtrd | |- ( ( ph /\ 0 < N ) -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |
| 42 | 41 | ex | |- ( ph -> ( 0 < N -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) ) |
| 43 | 5 42 | mpd | |- ( ph -> ( N ( .g ` H ) X ) = ( N ( .g ` G ) X ) ) |