This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a constant is a continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | addccncf2.1 | |- F = ( x e. A |-> ( B + x ) ) |
|
| Assertion | addccncf2 | |- ( ( A C_ CC /\ B e. CC ) -> F e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addccncf2.1 | |- F = ( x e. A |-> ( B + x ) ) |
|
| 2 | simpl | |- ( ( A C_ CC /\ B e. CC ) -> A C_ CC ) |
|
| 3 | simpr | |- ( ( A C_ CC /\ B e. CC ) -> B e. CC ) |
|
| 4 | ssidd | |- ( ( A C_ CC /\ B e. CC ) -> CC C_ CC ) |
|
| 5 | 2 3 4 | constcncfg | |- ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) |
| 6 | ssid | |- CC C_ CC |
|
| 7 | cncfmptid | |- ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
|
| 8 | 6 7 | mpan2 | |- ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
| 9 | 8 | adantr | |- ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
| 10 | 5 9 | addcncf | |- ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> ( B + x ) ) e. ( A -cn-> CC ) ) |
| 11 | 1 10 | eqeltrid | |- ( ( A C_ CC /\ B e. CC ) -> F e. ( A -cn-> CC ) ) |