This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rescval.1 | |- D = ( C |`cat H ) |
|
| Assertion | rescval | |- ( ( C e. V /\ H e. W ) -> D = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescval.1 | |- D = ( C |`cat H ) |
|
| 2 | elex | |- ( C e. V -> C e. _V ) |
|
| 3 | elex | |- ( H e. W -> H e. _V ) |
|
| 4 | simpl | |- ( ( c = C /\ h = H ) -> c = C ) |
|
| 5 | simpr | |- ( ( c = C /\ h = H ) -> h = H ) |
|
| 6 | 5 | dmeqd | |- ( ( c = C /\ h = H ) -> dom h = dom H ) |
| 7 | 6 | dmeqd | |- ( ( c = C /\ h = H ) -> dom dom h = dom dom H ) |
| 8 | 4 7 | oveq12d | |- ( ( c = C /\ h = H ) -> ( c |`s dom dom h ) = ( C |`s dom dom H ) ) |
| 9 | 5 | opeq2d | |- ( ( c = C /\ h = H ) -> <. ( Hom ` ndx ) , h >. = <. ( Hom ` ndx ) , H >. ) |
| 10 | 8 9 | oveq12d | |- ( ( c = C /\ h = H ) -> ( ( c |`s dom dom h ) sSet <. ( Hom ` ndx ) , h >. ) = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 11 | df-resc | |- |`cat = ( c e. _V , h e. _V |-> ( ( c |`s dom dom h ) sSet <. ( Hom ` ndx ) , h >. ) ) |
|
| 12 | ovex | |- ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) e. _V |
|
| 13 | 10 11 12 | ovmpoa | |- ( ( C e. _V /\ H e. _V ) -> ( C |`cat H ) = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 14 | 2 3 13 | syl2an | |- ( ( C e. V /\ H e. W ) -> ( C |`cat H ) = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 15 | 1 14 | eqtrid | |- ( ( C e. V /\ H e. W ) -> D = ( ( C |`s dom dom H ) sSet <. ( Hom ` ndx ) , H >. ) ) |