This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswrevw | |- ( ( S e. V /\ N e. NN0 ) -> ( reverse ` ( S repeatS N ) ) = ( S repeatS N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repswlen | |- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = N ) |
|
| 2 | 1 | oveq2d | |- ( ( S e. V /\ N e. NN0 ) -> ( 0 ..^ ( # ` ( S repeatS N ) ) ) = ( 0 ..^ N ) ) |
| 3 | 2 | mpteq1d | |- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ N ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) ) |
| 4 | simpll | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> S e. V ) |
|
| 5 | simplr | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> N e. NN0 ) |
|
| 6 | 1 | adantr | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( # ` ( S repeatS N ) ) = N ) |
| 7 | 6 | oveq1d | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( # ` ( S repeatS N ) ) - 1 ) = ( N - 1 ) ) |
| 8 | 7 | oveq1d | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) = ( ( N - 1 ) - x ) ) |
| 9 | ubmelm1fzo | |- ( x e. ( 0 ..^ N ) -> ( ( N - x ) - 1 ) e. ( 0 ..^ N ) ) |
|
| 10 | elfzoelz | |- ( x e. ( 0 ..^ N ) -> x e. ZZ ) |
|
| 11 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 12 | 11 | ad2antll | |- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> N e. CC ) |
| 13 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 14 | 13 | adantr | |- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> x e. CC ) |
| 15 | 1cnd | |- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> 1 e. CC ) |
|
| 16 | 12 14 15 | sub32d | |- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> ( ( N - x ) - 1 ) = ( ( N - 1 ) - x ) ) |
| 17 | 16 | eleq1d | |- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) <-> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) |
| 18 | 17 | biimpd | |- ( ( x e. ZZ /\ ( S e. V /\ N e. NN0 ) ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) |
| 19 | 18 | ex | |- ( x e. ZZ -> ( ( S e. V /\ N e. NN0 ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) ) |
| 20 | 10 19 | syl | |- ( x e. ( 0 ..^ N ) -> ( ( S e. V /\ N e. NN0 ) -> ( ( ( N - x ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) ) |
| 21 | 9 20 | mpid | |- ( x e. ( 0 ..^ N ) -> ( ( S e. V /\ N e. NN0 ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) ) |
| 22 | 21 | impcom | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( N - 1 ) - x ) e. ( 0 ..^ N ) ) |
| 23 | 8 22 | eqeltrd | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) e. ( 0 ..^ N ) ) |
| 24 | repswsymb | |- ( ( S e. V /\ N e. NN0 /\ ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) = S ) |
|
| 25 | 4 5 23 24 | syl3anc | |- ( ( ( S e. V /\ N e. NN0 ) /\ x e. ( 0 ..^ N ) ) -> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) = S ) |
| 26 | 25 | mpteq2dva | |- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ N ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
| 27 | 3 26 | eqtrd | |- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
| 28 | ovex | |- ( S repeatS N ) e. _V |
|
| 29 | revval | |- ( ( S repeatS N ) e. _V -> ( reverse ` ( S repeatS N ) ) = ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) ) |
|
| 30 | 28 29 | mp1i | |- ( ( S e. V /\ N e. NN0 ) -> ( reverse ` ( S repeatS N ) ) = ( x e. ( 0 ..^ ( # ` ( S repeatS N ) ) ) |-> ( ( S repeatS N ) ` ( ( ( # ` ( S repeatS N ) ) - 1 ) - x ) ) ) ) |
| 31 | reps | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
|
| 32 | 27 30 31 | 3eqtr4d | |- ( ( S e. V /\ N e. NN0 ) -> ( reverse ` ( S repeatS N ) ) = ( S repeatS N ) ) |