This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reps | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( S e. V -> S e. _V ) |
|
| 2 | 1 | adantr | |- ( ( S e. V /\ N e. NN0 ) -> S e. _V ) |
| 3 | simpr | |- ( ( S e. V /\ N e. NN0 ) -> N e. NN0 ) |
|
| 4 | ovex | |- ( 0 ..^ N ) e. _V |
|
| 5 | mptexg | |- ( ( 0 ..^ N ) e. _V -> ( x e. ( 0 ..^ N ) |-> S ) e. _V ) |
|
| 6 | 4 5 | mp1i | |- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ N ) |-> S ) e. _V ) |
| 7 | oveq2 | |- ( n = N -> ( 0 ..^ n ) = ( 0 ..^ N ) ) |
|
| 8 | 7 | adantl | |- ( ( s = S /\ n = N ) -> ( 0 ..^ n ) = ( 0 ..^ N ) ) |
| 9 | simpll | |- ( ( ( s = S /\ n = N ) /\ x e. ( 0 ..^ n ) ) -> s = S ) |
|
| 10 | 8 9 | mpteq12dva | |- ( ( s = S /\ n = N ) -> ( x e. ( 0 ..^ n ) |-> s ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
| 11 | df-reps | |- repeatS = ( s e. _V , n e. NN0 |-> ( x e. ( 0 ..^ n ) |-> s ) ) |
|
| 12 | 10 11 | ovmpoga | |- ( ( S e. _V /\ N e. NN0 /\ ( x e. ( 0 ..^ N ) |-> S ) e. _V ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
| 13 | 2 3 6 12 | syl3anc | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |