This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a "repeated symbol word". (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repswlen | |- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | repsf | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> V ) |
|
| 2 | ffn | |- ( ( S repeatS N ) : ( 0 ..^ N ) --> V -> ( S repeatS N ) Fn ( 0 ..^ N ) ) |
|
| 3 | hashfn | |- ( ( S repeatS N ) Fn ( 0 ..^ N ) -> ( # ` ( S repeatS N ) ) = ( # ` ( 0 ..^ N ) ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 5 | hashfzo0 | |- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
|
| 6 | 5 | adantl | |- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( 0 ..^ N ) ) = N ) |
| 7 | 4 6 | eqtrd | |- ( ( S e. V /\ N e. NN0 ) -> ( # ` ( S repeatS N ) ) = N ) |