This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm of positive A raised to an integer power. Property 4 of Cohen p. 301-302, restricted to natural logarithms and integer powers N . (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogexp | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 | efexp | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
| 5 | reeflog | ⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 6 | 5 | oveq1d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴 ↑ 𝑁 ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) = ( log ‘ ( 𝐴 ↑ 𝑁 ) ) ) |
| 10 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 11 | remulcl | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ ) | |
| 12 | 10 1 11 | syl2anr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 13 | relogef | ⊢ ( ( 𝑁 · ( log ‘ 𝐴 ) ) ∈ ℝ → ( log ‘ ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |
| 15 | 9 14 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ 𝐴 ) ) ) |