This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. Similar to definition of symmetry in Schechter p. 51. (Contributed by NM, 28-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by SN, 23-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' R |
|
| 2 | ssrel3 | |- ( Rel `' R -> ( `' R C_ R <-> A. y A. x ( y `' R x -> y R x ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( `' R C_ R <-> A. y A. x ( y `' R x -> y R x ) ) |
| 4 | breq1 | |- ( y = z -> ( y `' R x <-> z `' R x ) ) |
|
| 5 | breq1 | |- ( y = z -> ( y R x <-> z R x ) ) |
|
| 6 | 4 5 | imbi12d | |- ( y = z -> ( ( y `' R x -> y R x ) <-> ( z `' R x -> z R x ) ) ) |
| 7 | breq2 | |- ( x = z -> ( y `' R x <-> y `' R z ) ) |
|
| 8 | breq2 | |- ( x = z -> ( y R x <-> y R z ) ) |
|
| 9 | 7 8 | imbi12d | |- ( x = z -> ( ( y `' R x -> y R x ) <-> ( y `' R z -> y R z ) ) ) |
| 10 | 6 9 | alcomw | |- ( A. y A. x ( y `' R x -> y R x ) <-> A. x A. y ( y `' R x -> y R x ) ) |
| 11 | vex | |- y e. _V |
|
| 12 | vex | |- x e. _V |
|
| 13 | 11 12 | brcnv | |- ( y `' R x <-> x R y ) |
| 14 | 13 | imbi1i | |- ( ( y `' R x -> y R x ) <-> ( x R y -> y R x ) ) |
| 15 | 14 | 2albii | |- ( A. x A. y ( y `' R x -> y R x ) <-> A. x A. y ( x R y -> y R x ) ) |
| 16 | 3 10 15 | 3bitri | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) |