This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the class of equivalence relations. (Contributed by Peter Mazsa, 2-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeqvrels3 | |- EqvRels = { r e. Rels | ( A. x e. dom r x r x /\ A. x A. y ( x r y -> y r x ) /\ A. x A. y A. z ( ( x r y /\ y r z ) -> x r z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeqvrels2 | |- EqvRels = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } |
|
| 2 | idrefALT | |- ( ( _I |` dom r ) C_ r <-> A. x e. dom r x r x ) |
|
| 3 | cnvsym | |- ( `' r C_ r <-> A. x A. y ( x r y -> y r x ) ) |
|
| 4 | cotr | |- ( ( r o. r ) C_ r <-> A. x A. y A. z ( ( x r y /\ y r z ) -> x r z ) ) |
|
| 5 | 2 3 4 | 3anbi123i | |- ( ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) <-> ( A. x e. dom r x r x /\ A. x A. y ( x r y -> y r x ) /\ A. x A. y A. z ( ( x r y /\ y r z ) -> x r z ) ) ) |
| 6 | 1 5 | rabbieq | |- EqvRels = { r e. Rels | ( A. x e. dom r x r x /\ A. x A. y ( x r y -> y r x ) /\ A. x A. y A. z ( ( x r y /\ y r z ) -> x r z ) ) } |