This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation which is reflexive and symmetric (like an equivalence relation) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrel2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 23-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refsymrel2 | |- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrefrel2 | |- ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) ) |
|
| 2 | dfsymrel2 | |- ( SymRel R <-> ( `' R C_ R /\ Rel R ) ) |
|
| 3 | 1 2 | anbi12i | |- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) ) |
| 4 | anandi3r | |- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R /\ `' R C_ R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) /\ ( `' R C_ R /\ Rel R ) ) ) |
|
| 5 | 3anan32 | |- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R /\ `' R C_ R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
|
| 6 | 3 4 5 | 3bitr2i | |- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
| 7 | symrefref2 | |- ( `' R C_ R -> ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> ( _I |` dom R ) C_ R ) ) |
|
| 8 | 7 | pm5.32ri | |- ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) <-> ( ( _I |` dom R ) C_ R /\ `' R C_ R ) ) |
| 9 | 8 | anbi1i | |- ( ( ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ `' R C_ R ) /\ Rel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
| 10 | 6 9 | bitri | |- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |