This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of reciprocal of nonzero complex number. (Contributed by Eric Schmidt, 22-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recex | |- ( ( A e. CC /\ A =/= 0 ) -> E. x e. CC ( A x. x ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) ) |
|
| 2 | recextlem2 | |- ( ( a e. RR /\ b e. RR /\ ( a + ( _i x. b ) ) =/= 0 ) -> ( ( a x. a ) + ( b x. b ) ) =/= 0 ) |
|
| 3 | 2 | 3expia | |- ( ( a e. RR /\ b e. RR ) -> ( ( a + ( _i x. b ) ) =/= 0 -> ( ( a x. a ) + ( b x. b ) ) =/= 0 ) ) |
| 4 | remulcl | |- ( ( a e. RR /\ a e. RR ) -> ( a x. a ) e. RR ) |
|
| 5 | 4 | anidms | |- ( a e. RR -> ( a x. a ) e. RR ) |
| 6 | remulcl | |- ( ( b e. RR /\ b e. RR ) -> ( b x. b ) e. RR ) |
|
| 7 | 6 | anidms | |- ( b e. RR -> ( b x. b ) e. RR ) |
| 8 | readdcl | |- ( ( ( a x. a ) e. RR /\ ( b x. b ) e. RR ) -> ( ( a x. a ) + ( b x. b ) ) e. RR ) |
|
| 9 | 5 7 8 | syl2an | |- ( ( a e. RR /\ b e. RR ) -> ( ( a x. a ) + ( b x. b ) ) e. RR ) |
| 10 | ax-rrecex | |- ( ( ( ( a x. a ) + ( b x. b ) ) e. RR /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) |
|
| 11 | 9 10 | sylan | |- ( ( ( a e. RR /\ b e. RR ) /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) |
| 12 | recn | |- ( a e. RR -> a e. CC ) |
|
| 13 | recn | |- ( b e. RR -> b e. CC ) |
|
| 14 | recn | |- ( y e. RR -> y e. CC ) |
|
| 15 | ax-icn | |- _i e. CC |
|
| 16 | mulcl | |- ( ( _i e. CC /\ b e. CC ) -> ( _i x. b ) e. CC ) |
|
| 17 | 15 16 | mpan | |- ( b e. CC -> ( _i x. b ) e. CC ) |
| 18 | subcl | |- ( ( a e. CC /\ ( _i x. b ) e. CC ) -> ( a - ( _i x. b ) ) e. CC ) |
|
| 19 | 17 18 | sylan2 | |- ( ( a e. CC /\ b e. CC ) -> ( a - ( _i x. b ) ) e. CC ) |
| 20 | mulcl | |- ( ( ( a - ( _i x. b ) ) e. CC /\ y e. CC ) -> ( ( a - ( _i x. b ) ) x. y ) e. CC ) |
|
| 21 | 19 20 | sylan | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( a - ( _i x. b ) ) x. y ) e. CC ) |
| 22 | addcl | |- ( ( a e. CC /\ ( _i x. b ) e. CC ) -> ( a + ( _i x. b ) ) e. CC ) |
|
| 23 | 17 22 | sylan2 | |- ( ( a e. CC /\ b e. CC ) -> ( a + ( _i x. b ) ) e. CC ) |
| 24 | 23 | adantr | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( a + ( _i x. b ) ) e. CC ) |
| 25 | 19 | adantr | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( a - ( _i x. b ) ) e. CC ) |
| 26 | simpr | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> y e. CC ) |
|
| 27 | 24 25 26 | mulassd | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) x. y ) = ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) ) |
| 28 | recextlem1 | |- ( ( a e. CC /\ b e. CC ) -> ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) = ( ( a x. a ) + ( b x. b ) ) ) |
|
| 29 | 28 | adantr | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) = ( ( a x. a ) + ( b x. b ) ) ) |
| 30 | 29 | oveq1d | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( ( a + ( _i x. b ) ) x. ( a - ( _i x. b ) ) ) x. y ) = ( ( ( a x. a ) + ( b x. b ) ) x. y ) ) |
| 31 | 27 30 | eqtr3d | |- ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) -> ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = ( ( ( a x. a ) + ( b x. b ) ) x. y ) ) |
| 32 | id | |- ( ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) |
|
| 33 | 31 32 | sylan9eq | |- ( ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) /\ ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) -> ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = 1 ) |
| 34 | oveq2 | |- ( x = ( ( a - ( _i x. b ) ) x. y ) -> ( ( a + ( _i x. b ) ) x. x ) = ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) ) |
|
| 35 | 34 | eqeq1d | |- ( x = ( ( a - ( _i x. b ) ) x. y ) -> ( ( ( a + ( _i x. b ) ) x. x ) = 1 <-> ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = 1 ) ) |
| 36 | 35 | rspcev | |- ( ( ( ( a - ( _i x. b ) ) x. y ) e. CC /\ ( ( a + ( _i x. b ) ) x. ( ( a - ( _i x. b ) ) x. y ) ) = 1 ) -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) |
| 37 | 21 33 36 | syl2an2r | |- ( ( ( ( a e. CC /\ b e. CC ) /\ y e. CC ) /\ ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 ) -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) |
| 38 | 37 | exp31 | |- ( ( a e. CC /\ b e. CC ) -> ( y e. CC -> ( ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) ) |
| 39 | 14 38 | syl5 | |- ( ( a e. CC /\ b e. CC ) -> ( y e. RR -> ( ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) ) |
| 40 | 39 | rexlimdv | |- ( ( a e. CC /\ b e. CC ) -> ( E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 41 | 12 13 40 | syl2an | |- ( ( a e. RR /\ b e. RR ) -> ( E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 42 | 41 | adantr | |- ( ( ( a e. RR /\ b e. RR ) /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> ( E. y e. RR ( ( ( a x. a ) + ( b x. b ) ) x. y ) = 1 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 43 | 11 42 | mpd | |- ( ( ( a e. RR /\ b e. RR ) /\ ( ( a x. a ) + ( b x. b ) ) =/= 0 ) -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) |
| 44 | 43 | ex | |- ( ( a e. RR /\ b e. RR ) -> ( ( ( a x. a ) + ( b x. b ) ) =/= 0 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 45 | 3 44 | syld | |- ( ( a e. RR /\ b e. RR ) -> ( ( a + ( _i x. b ) ) =/= 0 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 46 | 45 | adantr | |- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( ( a + ( _i x. b ) ) =/= 0 -> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 47 | neeq1 | |- ( A = ( a + ( _i x. b ) ) -> ( A =/= 0 <-> ( a + ( _i x. b ) ) =/= 0 ) ) |
|
| 48 | 47 | adantl | |- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( A =/= 0 <-> ( a + ( _i x. b ) ) =/= 0 ) ) |
| 49 | oveq1 | |- ( A = ( a + ( _i x. b ) ) -> ( A x. x ) = ( ( a + ( _i x. b ) ) x. x ) ) |
|
| 50 | 49 | eqeq1d | |- ( A = ( a + ( _i x. b ) ) -> ( ( A x. x ) = 1 <-> ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 51 | 50 | rexbidv | |- ( A = ( a + ( _i x. b ) ) -> ( E. x e. CC ( A x. x ) = 1 <-> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 52 | 51 | adantl | |- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( E. x e. CC ( A x. x ) = 1 <-> E. x e. CC ( ( a + ( _i x. b ) ) x. x ) = 1 ) ) |
| 53 | 46 48 52 | 3imtr4d | |- ( ( ( a e. RR /\ b e. RR ) /\ A = ( a + ( _i x. b ) ) ) -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) |
| 54 | 53 | ex | |- ( ( a e. RR /\ b e. RR ) -> ( A = ( a + ( _i x. b ) ) -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) ) |
| 55 | 54 | rexlimivv | |- ( E. a e. RR E. b e. RR A = ( a + ( _i x. b ) ) -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) |
| 56 | 1 55 | syl | |- ( A e. CC -> ( A =/= 0 -> E. x e. CC ( A x. x ) = 1 ) ) |
| 57 | 56 | imp | |- ( ( A e. CC /\ A =/= 0 ) -> E. x e. CC ( A x. x ) = 1 ) |