This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for recex . (Contributed by Eric Schmidt, 23-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recextlem1 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 4 | 2 3 | mpan | |- ( B e. CC -> ( _i x. B ) e. CC ) |
| 5 | 4 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 6 | subcl | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A - ( _i x. B ) ) e. CC ) |
|
| 7 | 4 6 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( _i x. B ) ) e. CC ) |
| 8 | 1 5 7 | adddird | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A x. ( A - ( _i x. B ) ) ) + ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) ) ) |
| 9 | 1 1 5 | subdid | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( A - ( _i x. B ) ) ) = ( ( A x. A ) - ( A x. ( _i x. B ) ) ) ) |
| 10 | 5 1 5 | subdid | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) = ( ( ( _i x. B ) x. A ) - ( ( _i x. B ) x. ( _i x. B ) ) ) ) |
| 11 | mulcom | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A x. ( _i x. B ) ) = ( ( _i x. B ) x. A ) ) |
|
| 12 | 4 11 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( _i x. B ) ) = ( ( _i x. B ) x. A ) ) |
| 13 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 14 | 13 | oveq1i | |- ( ( _i x. _i ) x. ( B x. B ) ) = ( -u 1 x. ( B x. B ) ) |
| 15 | mulcl | |- ( ( B e. CC /\ B e. CC ) -> ( B x. B ) e. CC ) |
|
| 16 | 15 | mulm1d | |- ( ( B e. CC /\ B e. CC ) -> ( -u 1 x. ( B x. B ) ) = -u ( B x. B ) ) |
| 17 | 14 16 | eqtr2id | |- ( ( B e. CC /\ B e. CC ) -> -u ( B x. B ) = ( ( _i x. _i ) x. ( B x. B ) ) ) |
| 18 | mul4 | |- ( ( ( _i e. CC /\ _i e. CC ) /\ ( B e. CC /\ B e. CC ) ) -> ( ( _i x. _i ) x. ( B x. B ) ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
|
| 19 | 2 2 18 | mpanl12 | |- ( ( B e. CC /\ B e. CC ) -> ( ( _i x. _i ) x. ( B x. B ) ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 20 | 17 19 | eqtrd | |- ( ( B e. CC /\ B e. CC ) -> -u ( B x. B ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 21 | 20 | anidms | |- ( B e. CC -> -u ( B x. B ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 22 | 21 | adantl | |- ( ( A e. CC /\ B e. CC ) -> -u ( B x. B ) = ( ( _i x. B ) x. ( _i x. B ) ) ) |
| 23 | 12 22 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) = ( ( ( _i x. B ) x. A ) - ( ( _i x. B ) x. ( _i x. B ) ) ) ) |
| 24 | 10 23 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) = ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) |
| 25 | 9 24 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. ( A - ( _i x. B ) ) ) + ( ( _i x. B ) x. ( A - ( _i x. B ) ) ) ) = ( ( ( A x. A ) - ( A x. ( _i x. B ) ) ) + ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) ) |
| 26 | mulcl | |- ( ( A e. CC /\ A e. CC ) -> ( A x. A ) e. CC ) |
|
| 27 | 26 | anidms | |- ( A e. CC -> ( A x. A ) e. CC ) |
| 28 | 27 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A x. A ) e. CC ) |
| 29 | mulcl | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A x. ( _i x. B ) ) e. CC ) |
|
| 30 | 4 29 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. ( _i x. B ) ) e. CC ) |
| 31 | 15 | negcld | |- ( ( B e. CC /\ B e. CC ) -> -u ( B x. B ) e. CC ) |
| 32 | 31 | anidms | |- ( B e. CC -> -u ( B x. B ) e. CC ) |
| 33 | 32 | adantl | |- ( ( A e. CC /\ B e. CC ) -> -u ( B x. B ) e. CC ) |
| 34 | 28 30 33 | npncand | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. A ) - ( A x. ( _i x. B ) ) ) + ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) = ( ( A x. A ) - -u ( B x. B ) ) ) |
| 35 | 15 | anidms | |- ( B e. CC -> ( B x. B ) e. CC ) |
| 36 | subneg | |- ( ( ( A x. A ) e. CC /\ ( B x. B ) e. CC ) -> ( ( A x. A ) - -u ( B x. B ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
|
| 37 | 27 35 36 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. A ) - -u ( B x. B ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
| 38 | 34 37 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. A ) - ( A x. ( _i x. B ) ) ) + ( ( A x. ( _i x. B ) ) - -u ( B x. B ) ) ) = ( ( A x. A ) + ( B x. B ) ) ) |
| 39 | 8 25 38 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) x. ( A - ( _i x. B ) ) ) = ( ( A x. A ) + ( B x. B ) ) ) |