This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal is one-to-one. (Contributed by NM, 16-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rec11 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) = ( 1 / B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> 1 e. CC ) |
|
| 2 | reccl | |- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / B ) e. CC ) |
| 4 | simpl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A e. CC /\ A =/= 0 ) ) |
|
| 5 | divmul | |- ( ( 1 e. CC /\ ( 1 / B ) e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( ( 1 / A ) = ( 1 / B ) <-> ( A x. ( 1 / B ) ) = 1 ) ) |
|
| 6 | 1 3 4 5 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) = ( 1 / B ) <-> ( A x. ( 1 / B ) ) = 1 ) ) |
| 7 | simpll | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> A e. CC ) |
|
| 8 | simprl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B e. CC ) |
|
| 9 | simprr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 10 | divrec | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
|
| 11 | 7 8 9 10 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 12 | 11 | eqeq1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 1 <-> ( A x. ( 1 / B ) ) = 1 ) ) |
| 13 | diveq1 | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 1 <-> A = B ) ) |
|
| 14 | 7 8 9 13 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 1 <-> A = B ) ) |
| 15 | 6 12 14 | 3bitr2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( 1 / A ) = ( 1 / B ) <-> A = B ) ) |