This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the recursive definition generator at (/) when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rdgprc0 | |- ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | |- (/) e. On |
|
| 2 | rdgval | |- ( (/) e. On -> ( rec ( F , I ) ` (/) ) = ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( rec ( F , I ) |` (/) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( rec ( F , I ) ` (/) ) = ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( rec ( F , I ) |` (/) ) ) |
| 4 | res0 | |- ( rec ( F , I ) |` (/) ) = (/) |
|
| 5 | 4 | fveq2i | |- ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` ( rec ( F , I ) |` (/) ) ) = ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) |
| 6 | 3 5 | eqtri | |- ( rec ( F , I ) ` (/) ) = ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) |
| 7 | eqeq1 | |- ( g = (/) -> ( g = (/) <-> (/) = (/) ) ) |
|
| 8 | dmeq | |- ( g = (/) -> dom g = dom (/) ) |
|
| 9 | limeq | |- ( dom g = dom (/) -> ( Lim dom g <-> Lim dom (/) ) ) |
|
| 10 | 8 9 | syl | |- ( g = (/) -> ( Lim dom g <-> Lim dom (/) ) ) |
| 11 | rneq | |- ( g = (/) -> ran g = ran (/) ) |
|
| 12 | 11 | unieqd | |- ( g = (/) -> U. ran g = U. ran (/) ) |
| 13 | id | |- ( g = (/) -> g = (/) ) |
|
| 14 | 8 | unieqd | |- ( g = (/) -> U. dom g = U. dom (/) ) |
| 15 | 13 14 | fveq12d | |- ( g = (/) -> ( g ` U. dom g ) = ( (/) ` U. dom (/) ) ) |
| 16 | 15 | fveq2d | |- ( g = (/) -> ( F ` ( g ` U. dom g ) ) = ( F ` ( (/) ` U. dom (/) ) ) ) |
| 17 | 10 12 16 | ifbieq12d | |- ( g = (/) -> if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) = if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) |
| 18 | 7 17 | ifbieq2d | |- ( g = (/) -> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) = if ( (/) = (/) , I , if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) ) |
| 19 | 18 | eleq1d | |- ( g = (/) -> ( if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) e. _V <-> if ( (/) = (/) , I , if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) e. _V ) ) |
| 20 | eqid | |- ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) |
|
| 21 | 20 | dmmpt | |- dom ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) = { g e. _V | if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) e. _V } |
| 22 | 19 21 | elrab2 | |- ( (/) e. dom ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) <-> ( (/) e. _V /\ if ( (/) = (/) , I , if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) e. _V ) ) |
| 23 | eqid | |- (/) = (/) |
|
| 24 | 23 | iftruei | |- if ( (/) = (/) , I , if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) = I |
| 25 | 24 | eleq1i | |- ( if ( (/) = (/) , I , if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) e. _V <-> I e. _V ) |
| 26 | 25 | biimpi | |- ( if ( (/) = (/) , I , if ( Lim dom (/) , U. ran (/) , ( F ` ( (/) ` U. dom (/) ) ) ) ) e. _V -> I e. _V ) |
| 27 | 22 26 | simplbiim | |- ( (/) e. dom ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) -> I e. _V ) |
| 28 | ndmfv | |- ( -. (/) e. dom ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) -> ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) = (/) ) |
|
| 29 | 27 28 | nsyl5 | |- ( -. I e. _V -> ( ( g e. _V |-> if ( g = (/) , I , if ( Lim dom g , U. ran g , ( F ` ( g ` U. dom g ) ) ) ) ) ` (/) ) = (/) ) |
| 30 | 6 29 | eqtrid | |- ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = (/) ) |