This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intmin | |- ( A e. B -> |^| { x e. B | A C_ x } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- y e. _V |
|
| 2 | 1 | elintrab | |- ( y e. |^| { x e. B | A C_ x } <-> A. x e. B ( A C_ x -> y e. x ) ) |
| 3 | ssid | |- A C_ A |
|
| 4 | sseq2 | |- ( x = A -> ( A C_ x <-> A C_ A ) ) |
|
| 5 | eleq2 | |- ( x = A -> ( y e. x <-> y e. A ) ) |
|
| 6 | 4 5 | imbi12d | |- ( x = A -> ( ( A C_ x -> y e. x ) <-> ( A C_ A -> y e. A ) ) ) |
| 7 | 6 | rspcv | |- ( A e. B -> ( A. x e. B ( A C_ x -> y e. x ) -> ( A C_ A -> y e. A ) ) ) |
| 8 | 3 7 | mpii | |- ( A e. B -> ( A. x e. B ( A C_ x -> y e. x ) -> y e. A ) ) |
| 9 | 2 8 | biimtrid | |- ( A e. B -> ( y e. |^| { x e. B | A C_ x } -> y e. A ) ) |
| 10 | 9 | ssrdv | |- ( A e. B -> |^| { x e. B | A C_ x } C_ A ) |
| 11 | ssintub | |- A C_ |^| { x e. B | A C_ x } |
|
| 12 | 11 | a1i | |- ( A e. B -> A C_ |^| { x e. B | A C_ x } ) |
| 13 | 10 12 | eqssd | |- ( A e. B -> |^| { x e. B | A C_ x } = A ) |