This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankelb | |- ( B e. U. ( R1 " On ) -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi | |- ( B e. U. ( R1 " On ) -> B C_ U. ( R1 " On ) ) |
|
| 2 | 1 | sseld | |- ( B e. U. ( R1 " On ) -> ( A e. B -> A e. U. ( R1 " On ) ) ) |
| 3 | rankidn | |- ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |
|
| 4 | 2 3 | syl6 | |- ( B e. U. ( R1 " On ) -> ( A e. B -> -. A e. ( R1 ` ( rank ` A ) ) ) ) |
| 5 | 4 | imp | |- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |
| 6 | rankon | |- ( rank ` B ) e. On |
|
| 7 | rankon | |- ( rank ` A ) e. On |
|
| 8 | ontri1 | |- ( ( ( rank ` B ) e. On /\ ( rank ` A ) e. On ) -> ( ( rank ` B ) C_ ( rank ` A ) <-> -. ( rank ` A ) e. ( rank ` B ) ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( ( rank ` B ) C_ ( rank ` A ) <-> -. ( rank ` A ) e. ( rank ` B ) ) |
| 10 | rankdmr1 | |- ( rank ` B ) e. dom R1 |
|
| 11 | rankdmr1 | |- ( rank ` A ) e. dom R1 |
|
| 12 | r1ord3g | |- ( ( ( rank ` B ) e. dom R1 /\ ( rank ` A ) e. dom R1 ) -> ( ( rank ` B ) C_ ( rank ` A ) -> ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) ) ) |
|
| 13 | 10 11 12 | mp2an | |- ( ( rank ` B ) C_ ( rank ` A ) -> ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) ) |
| 14 | r1rankidb | |- ( B e. U. ( R1 " On ) -> B C_ ( R1 ` ( rank ` B ) ) ) |
|
| 15 | 14 | sselda | |- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> A e. ( R1 ` ( rank ` B ) ) ) |
| 16 | ssel | |- ( ( R1 ` ( rank ` B ) ) C_ ( R1 ` ( rank ` A ) ) -> ( A e. ( R1 ` ( rank ` B ) ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
|
| 17 | 13 15 16 | syl2imc | |- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( ( rank ` B ) C_ ( rank ` A ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
| 18 | 9 17 | biimtrrid | |- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( -. ( rank ` A ) e. ( rank ` B ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
| 19 | 5 18 | mt3d | |- ( ( B e. U. ( R1 " On ) /\ A e. B ) -> ( rank ` A ) e. ( rank ` B ) ) |
| 20 | 19 | ex | |- ( B e. U. ( R1 " On ) -> ( A e. B -> ( rank ` A ) e. ( rank ` B ) ) ) |