This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rank membership is inherited by unordered pairs. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankelun.1 | |- A e. _V |
|
| rankelun.2 | |- B e. _V |
||
| rankelun.3 | |- C e. _V |
||
| rankelun.4 | |- D e. _V |
||
| Assertion | rankelpr | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` { A , B } ) e. ( rank ` { C , D } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelun.1 | |- A e. _V |
|
| 2 | rankelun.2 | |- B e. _V |
|
| 3 | rankelun.3 | |- C e. _V |
|
| 4 | rankelun.4 | |- D e. _V |
|
| 5 | 1 2 3 4 | rankelun | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` ( A u. B ) ) e. ( rank ` ( C u. D ) ) ) |
| 6 | 1 2 | rankun | |- ( rank ` ( A u. B ) ) = ( ( rank ` A ) u. ( rank ` B ) ) |
| 7 | 3 4 | rankun | |- ( rank ` ( C u. D ) ) = ( ( rank ` C ) u. ( rank ` D ) ) |
| 8 | 5 6 7 | 3eltr3g | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) |
| 9 | rankon | |- ( rank ` C ) e. On |
|
| 10 | rankon | |- ( rank ` D ) e. On |
|
| 11 | 9 10 | onun2i | |- ( ( rank ` C ) u. ( rank ` D ) ) e. On |
| 12 | 11 | onordi | |- Ord ( ( rank ` C ) u. ( rank ` D ) ) |
| 13 | ordsucelsuc | |- ( Ord ( ( rank ` C ) u. ( rank ` D ) ) -> ( ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) <-> suc ( ( rank ` A ) u. ( rank ` B ) ) e. suc ( ( rank ` C ) u. ( rank ` D ) ) ) ) |
|
| 14 | 12 13 | ax-mp | |- ( ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) <-> suc ( ( rank ` A ) u. ( rank ` B ) ) e. suc ( ( rank ` C ) u. ( rank ` D ) ) ) |
| 15 | 8 14 | sylib | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> suc ( ( rank ` A ) u. ( rank ` B ) ) e. suc ( ( rank ` C ) u. ( rank ` D ) ) ) |
| 16 | 1 2 | rankpr | |- ( rank ` { A , B } ) = suc ( ( rank ` A ) u. ( rank ` B ) ) |
| 17 | 3 4 | rankpr | |- ( rank ` { C , D } ) = suc ( ( rank ` C ) u. ( rank ` D ) ) |
| 18 | 15 16 17 | 3eltr4g | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` { A , B } ) e. ( rank ` { C , D } ) ) |