This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006) (Proof shortened by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankelun.1 | |- A e. _V |
|
| rankelun.2 | |- B e. _V |
||
| rankelun.3 | |- C e. _V |
||
| rankelun.4 | |- D e. _V |
||
| Assertion | rankelun | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` ( A u. B ) ) e. ( rank ` ( C u. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelun.1 | |- A e. _V |
|
| 2 | rankelun.2 | |- B e. _V |
|
| 3 | rankelun.3 | |- C e. _V |
|
| 4 | rankelun.4 | |- D e. _V |
|
| 5 | rankon | |- ( rank ` C ) e. On |
|
| 6 | rankon | |- ( rank ` D ) e. On |
|
| 7 | 5 6 | onun2i | |- ( ( rank ` C ) u. ( rank ` D ) ) e. On |
| 8 | 7 | onordi | |- Ord ( ( rank ` C ) u. ( rank ` D ) ) |
| 9 | elun1 | |- ( ( rank ` A ) e. ( rank ` C ) -> ( rank ` A ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) |
|
| 10 | elun2 | |- ( ( rank ` B ) e. ( rank ` D ) -> ( rank ` B ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) |
|
| 11 | ordunel | |- ( ( Ord ( ( rank ` C ) u. ( rank ` D ) ) /\ ( rank ` A ) e. ( ( rank ` C ) u. ( rank ` D ) ) /\ ( rank ` B ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) -> ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) |
|
| 12 | 8 9 10 11 | mp3an3an | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( ( rank ` A ) u. ( rank ` B ) ) e. ( ( rank ` C ) u. ( rank ` D ) ) ) |
| 13 | 1 2 | rankun | |- ( rank ` ( A u. B ) ) = ( ( rank ` A ) u. ( rank ` B ) ) |
| 14 | 3 4 | rankun | |- ( rank ` ( C u. D ) ) = ( ( rank ` C ) u. ( rank ` D ) ) |
| 15 | 12 13 14 | 3eltr4g | |- ( ( ( rank ` A ) e. ( rank ` C ) /\ ( rank ` B ) e. ( rank ` D ) ) -> ( rank ` ( A u. B ) ) e. ( rank ` ( C u. D ) ) ) |