This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecqusaddd.i | |- ( ph -> I e. ( NrmSGrp ` R ) ) |
|
| ecqusaddd.b | |- B = ( Base ` R ) |
||
| ecqusaddd.g | |- .~ = ( R ~QG I ) |
||
| ecqusaddd.q | |- Q = ( R /s .~ ) |
||
| Assertion | ecqusaddd | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqusaddd.i | |- ( ph -> I e. ( NrmSGrp ` R ) ) |
|
| 2 | ecqusaddd.b | |- B = ( Base ` R ) |
|
| 3 | ecqusaddd.g | |- .~ = ( R ~QG I ) |
|
| 4 | ecqusaddd.q | |- Q = ( R /s .~ ) |
|
| 5 | 1 | anim1i | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( I e. ( NrmSGrp ` R ) /\ ( A e. B /\ C e. B ) ) ) |
| 6 | 3anass | |- ( ( I e. ( NrmSGrp ` R ) /\ A e. B /\ C e. B ) <-> ( I e. ( NrmSGrp ` R ) /\ ( A e. B /\ C e. B ) ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( I e. ( NrmSGrp ` R ) /\ A e. B /\ C e. B ) ) |
| 8 | 3 | oveq2i | |- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
| 9 | 4 8 | eqtri | |- Q = ( R /s ( R ~QG I ) ) |
| 10 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 11 | eqid | |- ( +g ` Q ) = ( +g ` Q ) |
|
| 12 | 9 2 10 11 | qusadd | |- ( ( I e. ( NrmSGrp ` R ) /\ A e. B /\ C e. B ) -> ( [ A ] ( R ~QG I ) ( +g ` Q ) [ C ] ( R ~QG I ) ) = [ ( A ( +g ` R ) C ) ] ( R ~QG I ) ) |
| 13 | 7 12 | syl | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] ( R ~QG I ) ( +g ` Q ) [ C ] ( R ~QG I ) ) = [ ( A ( +g ` R ) C ) ] ( R ~QG I ) ) |
| 14 | 3 | eceq2i | |- [ A ] .~ = [ A ] ( R ~QG I ) |
| 15 | 3 | eceq2i | |- [ C ] .~ = [ C ] ( R ~QG I ) |
| 16 | 14 15 | oveq12i | |- ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) = ( [ A ] ( R ~QG I ) ( +g ` Q ) [ C ] ( R ~QG I ) ) |
| 17 | 3 | eceq2i | |- [ ( A ( +g ` R ) C ) ] .~ = [ ( A ( +g ` R ) C ) ] ( R ~QG I ) |
| 18 | 13 16 17 | 3eqtr4g | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) = [ ( A ( +g ` R ) C ) ] .~ ) |
| 19 | 18 | eqcomd | |- ( ( ph /\ ( A e. B /\ C e. B ) ) -> [ ( A ( +g ` R ) C ) ] .~ = ( [ A ] .~ ( +g ` Q ) [ C ] .~ ) ) |