This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication of a single coordinate in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsvscaval.y | |- Y = ( R ^s I ) |
|
| pwsvscaval.b | |- B = ( Base ` Y ) |
||
| pwsvscaval.s | |- .x. = ( .s ` R ) |
||
| pwsvscaval.t | |- .xb = ( .s ` Y ) |
||
| pwsvscaval.f | |- F = ( Scalar ` R ) |
||
| pwsvscaval.k | |- K = ( Base ` F ) |
||
| pwsvscaval.r | |- ( ph -> R e. V ) |
||
| pwsvscaval.i | |- ( ph -> I e. W ) |
||
| pwsvscaval.a | |- ( ph -> A e. K ) |
||
| pwsvscaval.x | |- ( ph -> X e. B ) |
||
| pwsvscaval.j | |- ( ph -> J e. I ) |
||
| Assertion | pwsvscaval | |- ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsvscaval.y | |- Y = ( R ^s I ) |
|
| 2 | pwsvscaval.b | |- B = ( Base ` Y ) |
|
| 3 | pwsvscaval.s | |- .x. = ( .s ` R ) |
|
| 4 | pwsvscaval.t | |- .xb = ( .s ` Y ) |
|
| 5 | pwsvscaval.f | |- F = ( Scalar ` R ) |
|
| 6 | pwsvscaval.k | |- K = ( Base ` F ) |
|
| 7 | pwsvscaval.r | |- ( ph -> R e. V ) |
|
| 8 | pwsvscaval.i | |- ( ph -> I e. W ) |
|
| 9 | pwsvscaval.a | |- ( ph -> A e. K ) |
|
| 10 | pwsvscaval.x | |- ( ph -> X e. B ) |
|
| 11 | pwsvscaval.j | |- ( ph -> J e. I ) |
|
| 12 | 1 2 3 4 5 6 7 8 9 10 | pwsvscafval | |- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |
| 13 | 12 | fveq1d | |- ( ph -> ( ( A .xb X ) ` J ) = ( ( ( I X. { A } ) oF .x. X ) ` J ) ) |
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | 1 14 2 7 8 10 | pwselbas | |- ( ph -> X : I --> ( Base ` R ) ) |
| 16 | 15 | ffnd | |- ( ph -> X Fn I ) |
| 17 | eqidd | |- ( ( ph /\ J e. I ) -> ( X ` J ) = ( X ` J ) ) |
|
| 18 | 8 9 16 17 | ofc1 | |- ( ( ph /\ J e. I ) -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( A .x. ( X ` J ) ) ) |
| 19 | 11 18 | mpdan | |- ( ph -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( A .x. ( X ` J ) ) ) |
| 20 | 13 19 | eqtrd | |- ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |