This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsle.y | |- Y = ( R ^s I ) |
|
| pwsle.v | |- B = ( Base ` Y ) |
||
| pwsle.o | |- O = ( le ` R ) |
||
| pwsle.l | |- .<_ = ( le ` Y ) |
||
| pwsleval.r | |- ( ph -> R e. V ) |
||
| pwsleval.i | |- ( ph -> I e. W ) |
||
| pwsleval.a | |- ( ph -> F e. B ) |
||
| pwsleval.b | |- ( ph -> G e. B ) |
||
| Assertion | pwsleval | |- ( ph -> ( F .<_ G <-> A. x e. I ( F ` x ) O ( G ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsle.y | |- Y = ( R ^s I ) |
|
| 2 | pwsle.v | |- B = ( Base ` Y ) |
|
| 3 | pwsle.o | |- O = ( le ` R ) |
|
| 4 | pwsle.l | |- .<_ = ( le ` Y ) |
|
| 5 | pwsleval.r | |- ( ph -> R e. V ) |
|
| 6 | pwsleval.i | |- ( ph -> I e. W ) |
|
| 7 | pwsleval.a | |- ( ph -> F e. B ) |
|
| 8 | pwsleval.b | |- ( ph -> G e. B ) |
|
| 9 | 1 2 3 4 | pwsle | |- ( ( R e. V /\ I e. W ) -> .<_ = ( oR O i^i ( B X. B ) ) ) |
| 10 | 5 6 9 | syl2anc | |- ( ph -> .<_ = ( oR O i^i ( B X. B ) ) ) |
| 11 | 10 | breqd | |- ( ph -> ( F .<_ G <-> F ( oR O i^i ( B X. B ) ) G ) ) |
| 12 | brinxp | |- ( ( F e. B /\ G e. B ) -> ( F oR O G <-> F ( oR O i^i ( B X. B ) ) G ) ) |
|
| 13 | 7 8 12 | syl2anc | |- ( ph -> ( F oR O G <-> F ( oR O i^i ( B X. B ) ) G ) ) |
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | 1 14 2 5 6 7 | pwselbas | |- ( ph -> F : I --> ( Base ` R ) ) |
| 16 | 15 | ffnd | |- ( ph -> F Fn I ) |
| 17 | 1 14 2 5 6 8 | pwselbas | |- ( ph -> G : I --> ( Base ` R ) ) |
| 18 | 17 | ffnd | |- ( ph -> G Fn I ) |
| 19 | inidm | |- ( I i^i I ) = I |
|
| 20 | eqidd | |- ( ( ph /\ x e. I ) -> ( F ` x ) = ( F ` x ) ) |
|
| 21 | eqidd | |- ( ( ph /\ x e. I ) -> ( G ` x ) = ( G ` x ) ) |
|
| 22 | 16 18 7 8 19 20 21 | ofrfvalg | |- ( ph -> ( F oR O G <-> A. x e. I ( F ` x ) O ( G ` x ) ) ) |
| 23 | 11 13 22 | 3bitr2d | |- ( ph -> ( F .<_ G <-> A. x e. I ( F ` x ) O ( G ` x ) ) ) |