This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ofeqd.1 | |- ( ph -> R = S ) |
|
| Assertion | ofeqd | |- ( ph -> oF R = oF S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofeqd.1 | |- ( ph -> R = S ) |
|
| 2 | 1 | oveqd | |- ( ph -> ( ( f ` x ) R ( g ` x ) ) = ( ( f ` x ) S ( g ` x ) ) ) |
| 3 | 2 | mpteq2dv | |- ( ph -> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) = ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) S ( g ` x ) ) ) ) |
| 4 | 3 | mpoeq3dv | |- ( ph -> ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) S ( g ` x ) ) ) ) ) |
| 5 | df-of | |- oF R = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) R ( g ` x ) ) ) ) |
|
| 6 | df-of | |- oF S = ( f e. _V , g e. _V |-> ( x e. ( dom f i^i dom g ) |-> ( ( f ` x ) S ( g ` x ) ) ) ) |
|
| 7 | 4 5 6 | 3eqtr4g | |- ( ph -> oF R = oF S ) |