This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the algebra of power series over the index set i and with coefficients from the ring r . (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psr | |- mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmps | |- mPwSer |
|
| 1 | vi | |- i |
|
| 2 | cvv | |- _V |
|
| 3 | vr | |- r |
|
| 4 | vh | |- h |
|
| 5 | cn0 | |- NN0 |
|
| 6 | cmap | |- ^m |
|
| 7 | 1 | cv | |- i |
| 8 | 5 7 6 | co | |- ( NN0 ^m i ) |
| 9 | 4 | cv | |- h |
| 10 | 9 | ccnv | |- `' h |
| 11 | cn | |- NN |
|
| 12 | 10 11 | cima | |- ( `' h " NN ) |
| 13 | cfn | |- Fin |
|
| 14 | 12 13 | wcel | |- ( `' h " NN ) e. Fin |
| 15 | 14 4 8 | crab | |- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
| 16 | vd | |- d |
|
| 17 | cbs | |- Base |
|
| 18 | 3 | cv | |- r |
| 19 | 18 17 | cfv | |- ( Base ` r ) |
| 20 | 16 | cv | |- d |
| 21 | 19 20 6 | co | |- ( ( Base ` r ) ^m d ) |
| 22 | vb | |- b |
|
| 23 | cnx | |- ndx |
|
| 24 | 23 17 | cfv | |- ( Base ` ndx ) |
| 25 | 22 | cv | |- b |
| 26 | 24 25 | cop | |- <. ( Base ` ndx ) , b >. |
| 27 | cplusg | |- +g |
|
| 28 | 23 27 | cfv | |- ( +g ` ndx ) |
| 29 | 18 27 | cfv | |- ( +g ` r ) |
| 30 | 29 | cof | |- oF ( +g ` r ) |
| 31 | 25 25 | cxp | |- ( b X. b ) |
| 32 | 30 31 | cres | |- ( oF ( +g ` r ) |` ( b X. b ) ) |
| 33 | 28 32 | cop | |- <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. |
| 34 | cmulr | |- .r |
|
| 35 | 23 34 | cfv | |- ( .r ` ndx ) |
| 36 | vf | |- f |
|
| 37 | vg | |- g |
|
| 38 | vk | |- k |
|
| 39 | cgsu | |- gsum |
|
| 40 | vx | |- x |
|
| 41 | vy | |- y |
|
| 42 | 41 | cv | |- y |
| 43 | cle | |- <_ |
|
| 44 | 43 | cofr | |- oR <_ |
| 45 | 38 | cv | |- k |
| 46 | 42 45 44 | wbr | |- y oR <_ k |
| 47 | 46 41 20 | crab | |- { y e. d | y oR <_ k } |
| 48 | 36 | cv | |- f |
| 49 | 40 | cv | |- x |
| 50 | 49 48 | cfv | |- ( f ` x ) |
| 51 | 18 34 | cfv | |- ( .r ` r ) |
| 52 | 37 | cv | |- g |
| 53 | cmin | |- - |
|
| 54 | 53 | cof | |- oF - |
| 55 | 45 49 54 | co | |- ( k oF - x ) |
| 56 | 55 52 | cfv | |- ( g ` ( k oF - x ) ) |
| 57 | 50 56 51 | co | |- ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) |
| 58 | 40 47 57 | cmpt | |- ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) |
| 59 | 18 58 39 | co | |- ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) |
| 60 | 38 20 59 | cmpt | |- ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) |
| 61 | 36 37 25 25 60 | cmpo | |- ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) |
| 62 | 35 61 | cop | |- <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. |
| 63 | 26 33 62 | ctp | |- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } |
| 64 | csca | |- Scalar |
|
| 65 | 23 64 | cfv | |- ( Scalar ` ndx ) |
| 66 | 65 18 | cop | |- <. ( Scalar ` ndx ) , r >. |
| 67 | cvsca | |- .s |
|
| 68 | 23 67 | cfv | |- ( .s ` ndx ) |
| 69 | 49 | csn | |- { x } |
| 70 | 20 69 | cxp | |- ( d X. { x } ) |
| 71 | 51 | cof | |- oF ( .r ` r ) |
| 72 | 70 48 71 | co | |- ( ( d X. { x } ) oF ( .r ` r ) f ) |
| 73 | 40 36 19 25 72 | cmpo | |- ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) |
| 74 | 68 73 | cop | |- <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. |
| 75 | cts | |- TopSet |
|
| 76 | 23 75 | cfv | |- ( TopSet ` ndx ) |
| 77 | cpt | |- Xt_ |
|
| 78 | ctopn | |- TopOpen |
|
| 79 | 18 78 | cfv | |- ( TopOpen ` r ) |
| 80 | 79 | csn | |- { ( TopOpen ` r ) } |
| 81 | 20 80 | cxp | |- ( d X. { ( TopOpen ` r ) } ) |
| 82 | 81 77 | cfv | |- ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) |
| 83 | 76 82 | cop | |- <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. |
| 84 | 66 74 83 | ctp | |- { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } |
| 85 | 63 84 | cun | |- ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
| 86 | 22 21 85 | csb | |- [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
| 87 | 16 15 86 | csb | |- [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) |
| 88 | 1 3 2 2 87 | cmpo | |- ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |
| 89 | 0 88 | wceq | |- mPwSer = ( i e. _V , r e. _V |-> [_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]_ [_ ( ( Base ` r ) ^m d ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF ( +g ` r ) |` ( b X. b ) ) >. , <. ( .r ` ndx ) , ( f e. b , g e. b |-> ( k e. d |-> ( r gsum ( x e. { y e. d | y oR <_ k } |-> ( ( f ` x ) ( .r ` r ) ( g ` ( k oF - x ) ) ) ) ) ) ) >. } u. { <. ( Scalar ` ndx ) , r >. , <. ( .s ` ndx ) , ( x e. ( Base ` r ) , f e. b |-> ( ( d X. { x } ) oF ( .r ` r ) f ) ) >. , <. ( TopSet ` ndx ) , ( Xt_ ` ( d X. { ( TopOpen ` r ) } ) ) >. } ) ) |