This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bag complementation is a bijection on the set of bags dominated by a given bag F . (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| psrbagconf1o.s | |- S = { y e. D | y oR <_ F } |
||
| Assertion | psrbagconf1o | |- ( F e. D -> ( x e. S |-> ( F oF - x ) ) : S -1-1-onto-> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | psrbagconf1o.s | |- S = { y e. D | y oR <_ F } |
|
| 3 | eqid | |- ( x e. S |-> ( F oF - x ) ) = ( x e. S |-> ( F oF - x ) ) |
|
| 4 | 1 2 | psrbagconcl | |- ( ( F e. D /\ x e. S ) -> ( F oF - x ) e. S ) |
| 5 | 1 2 | psrbagconcl | |- ( ( F e. D /\ z e. S ) -> ( F oF - z ) e. S ) |
| 6 | 1 | psrbagf | |- ( F e. D -> F : I --> NN0 ) |
| 7 | 6 | adantr | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> F : I --> NN0 ) |
| 8 | 7 | ffvelcdmda | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( F ` n ) e. NN0 ) |
| 9 | 2 | ssrab3 | |- S C_ D |
| 10 | 9 | sseli | |- ( z e. S -> z e. D ) |
| 11 | 10 | adantl | |- ( ( F e. D /\ z e. S ) -> z e. D ) |
| 12 | 1 | psrbagf | |- ( z e. D -> z : I --> NN0 ) |
| 13 | 11 12 | syl | |- ( ( F e. D /\ z e. S ) -> z : I --> NN0 ) |
| 14 | 13 | adantrl | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> z : I --> NN0 ) |
| 15 | 14 | ffvelcdmda | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( z ` n ) e. NN0 ) |
| 16 | simprl | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x e. S ) |
|
| 17 | 9 16 | sselid | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x e. D ) |
| 18 | 1 | psrbagf | |- ( x e. D -> x : I --> NN0 ) |
| 19 | 17 18 | syl | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x : I --> NN0 ) |
| 20 | 19 | ffvelcdmda | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( x ` n ) e. NN0 ) |
| 21 | nn0cn | |- ( ( F ` n ) e. NN0 -> ( F ` n ) e. CC ) |
|
| 22 | nn0cn | |- ( ( z ` n ) e. NN0 -> ( z ` n ) e. CC ) |
|
| 23 | nn0cn | |- ( ( x ` n ) e. NN0 -> ( x ` n ) e. CC ) |
|
| 24 | subsub23 | |- ( ( ( F ` n ) e. CC /\ ( z ` n ) e. CC /\ ( x ` n ) e. CC ) -> ( ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) ) |
|
| 25 | 21 22 23 24 | syl3an | |- ( ( ( F ` n ) e. NN0 /\ ( z ` n ) e. NN0 /\ ( x ` n ) e. NN0 ) -> ( ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) ) |
| 26 | 8 15 20 25 | syl3anc | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) ) |
| 27 | eqcom | |- ( ( x ` n ) = ( ( F ` n ) - ( z ` n ) ) <-> ( ( F ` n ) - ( z ` n ) ) = ( x ` n ) ) |
|
| 28 | eqcom | |- ( ( z ` n ) = ( ( F ` n ) - ( x ` n ) ) <-> ( ( F ` n ) - ( x ` n ) ) = ( z ` n ) ) |
|
| 29 | 26 27 28 | 3bitr4g | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( x ` n ) = ( ( F ` n ) - ( z ` n ) ) <-> ( z ` n ) = ( ( F ` n ) - ( x ` n ) ) ) ) |
| 30 | 6 | ffnd | |- ( F e. D -> F Fn I ) |
| 31 | 30 | adantr | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> F Fn I ) |
| 32 | 13 | ffnd | |- ( ( F e. D /\ z e. S ) -> z Fn I ) |
| 33 | 32 | adantrl | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> z Fn I ) |
| 34 | 19 | ffnd | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> x Fn I ) |
| 35 | 16 34 | fndmexd | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> I e. _V ) |
| 36 | inidm | |- ( I i^i I ) = I |
|
| 37 | eqidd | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( F ` n ) = ( F ` n ) ) |
|
| 38 | eqidd | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( z ` n ) = ( z ` n ) ) |
|
| 39 | 31 33 35 35 36 37 38 | ofval | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( F oF - z ) ` n ) = ( ( F ` n ) - ( z ` n ) ) ) |
| 40 | 39 | eqeq2d | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( x ` n ) = ( ( F oF - z ) ` n ) <-> ( x ` n ) = ( ( F ` n ) - ( z ` n ) ) ) ) |
| 41 | eqidd | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( x ` n ) = ( x ` n ) ) |
|
| 42 | 31 34 35 35 36 37 41 | ofval | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( F oF - x ) ` n ) = ( ( F ` n ) - ( x ` n ) ) ) |
| 43 | 42 | eqeq2d | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( z ` n ) = ( ( F oF - x ) ` n ) <-> ( z ` n ) = ( ( F ` n ) - ( x ` n ) ) ) ) |
| 44 | 29 40 43 | 3bitr4d | |- ( ( ( F e. D /\ ( x e. S /\ z e. S ) ) /\ n e. I ) -> ( ( x ` n ) = ( ( F oF - z ) ` n ) <-> ( z ` n ) = ( ( F oF - x ) ` n ) ) ) |
| 45 | 44 | ralbidva | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( A. n e. I ( x ` n ) = ( ( F oF - z ) ` n ) <-> A. n e. I ( z ` n ) = ( ( F oF - x ) ` n ) ) ) |
| 46 | 5 | adantrl | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) e. S ) |
| 47 | 9 46 | sselid | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) e. D ) |
| 48 | 1 | psrbagf | |- ( ( F oF - z ) e. D -> ( F oF - z ) : I --> NN0 ) |
| 49 | 47 48 | syl | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) : I --> NN0 ) |
| 50 | 49 | ffnd | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - z ) Fn I ) |
| 51 | eqfnfv | |- ( ( x Fn I /\ ( F oF - z ) Fn I ) -> ( x = ( F oF - z ) <-> A. n e. I ( x ` n ) = ( ( F oF - z ) ` n ) ) ) |
|
| 52 | 34 50 51 | syl2anc | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( x = ( F oF - z ) <-> A. n e. I ( x ` n ) = ( ( F oF - z ) ` n ) ) ) |
| 53 | 9 4 | sselid | |- ( ( F e. D /\ x e. S ) -> ( F oF - x ) e. D ) |
| 54 | 1 | psrbagf | |- ( ( F oF - x ) e. D -> ( F oF - x ) : I --> NN0 ) |
| 55 | 53 54 | syl | |- ( ( F e. D /\ x e. S ) -> ( F oF - x ) : I --> NN0 ) |
| 56 | 55 | ffnd | |- ( ( F e. D /\ x e. S ) -> ( F oF - x ) Fn I ) |
| 57 | 56 | adantrr | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( F oF - x ) Fn I ) |
| 58 | eqfnfv | |- ( ( z Fn I /\ ( F oF - x ) Fn I ) -> ( z = ( F oF - x ) <-> A. n e. I ( z ` n ) = ( ( F oF - x ) ` n ) ) ) |
|
| 59 | 33 57 58 | syl2anc | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( z = ( F oF - x ) <-> A. n e. I ( z ` n ) = ( ( F oF - x ) ` n ) ) ) |
| 60 | 45 52 59 | 3bitr4d | |- ( ( F e. D /\ ( x e. S /\ z e. S ) ) -> ( x = ( F oF - z ) <-> z = ( F oF - x ) ) ) |
| 61 | 3 4 5 60 | f1o2d | |- ( F e. D -> ( x e. S |-> ( F oF - x ) ) : S -1-1-onto-> S ) |