This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| psrbagconf1o.s | |- S = { y e. D | y oR <_ F } |
||
| Assertion | psrbagconcl | |- ( ( F e. D /\ X e. S ) -> ( F oF - X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | psrbagconf1o.s | |- S = { y e. D | y oR <_ F } |
|
| 3 | simpl | |- ( ( F e. D /\ X e. S ) -> F e. D ) |
|
| 4 | simpr | |- ( ( F e. D /\ X e. S ) -> X e. S ) |
|
| 5 | breq1 | |- ( y = X -> ( y oR <_ F <-> X oR <_ F ) ) |
|
| 6 | 5 2 | elrab2 | |- ( X e. S <-> ( X e. D /\ X oR <_ F ) ) |
| 7 | 4 6 | sylib | |- ( ( F e. D /\ X e. S ) -> ( X e. D /\ X oR <_ F ) ) |
| 8 | 7 | simpld | |- ( ( F e. D /\ X e. S ) -> X e. D ) |
| 9 | 1 | psrbagf | |- ( X e. D -> X : I --> NN0 ) |
| 10 | 8 9 | syl | |- ( ( F e. D /\ X e. S ) -> X : I --> NN0 ) |
| 11 | 7 | simprd | |- ( ( F e. D /\ X e. S ) -> X oR <_ F ) |
| 12 | 1 | psrbagcon | |- ( ( F e. D /\ X : I --> NN0 /\ X oR <_ F ) -> ( ( F oF - X ) e. D /\ ( F oF - X ) oR <_ F ) ) |
| 13 | 3 10 11 12 | syl3anc | |- ( ( F e. D /\ X e. S ) -> ( ( F oF - X ) e. D /\ ( F oF - X ) oR <_ F ) ) |
| 14 | breq1 | |- ( y = ( F oF - X ) -> ( y oR <_ F <-> ( F oF - X ) oR <_ F ) ) |
|
| 15 | 14 2 | elrab2 | |- ( ( F oF - X ) e. S <-> ( ( F oF - X ) e. D /\ ( F oF - X ) oR <_ F ) ) |
| 16 | 13 15 | sylibr | |- ( ( F e. D /\ X e. S ) -> ( F oF - X ) e. S ) |