This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | |- S = ( I mPwSer R ) |
|
| psrgrp.i | |- ( ph -> I e. V ) |
||
| psrgrp.r | |- ( ph -> R e. Grp ) |
||
| psr0cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psr0cl.o | |- .0. = ( 0g ` R ) |
||
| psr0cl.b | |- B = ( Base ` S ) |
||
| psr0lid.p | |- .+ = ( +g ` S ) |
||
| psr0lid.x | |- ( ph -> X e. B ) |
||
| Assertion | psr0lid | |- ( ph -> ( ( D X. { .0. } ) .+ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | |- S = ( I mPwSer R ) |
|
| 2 | psrgrp.i | |- ( ph -> I e. V ) |
|
| 3 | psrgrp.r | |- ( ph -> R e. Grp ) |
|
| 4 | psr0cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psr0cl.o | |- .0. = ( 0g ` R ) |
|
| 6 | psr0cl.b | |- B = ( Base ` S ) |
|
| 7 | psr0lid.p | |- .+ = ( +g ` S ) |
|
| 8 | psr0lid.x | |- ( ph -> X e. B ) |
|
| 9 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 10 | 1 2 3 4 5 6 | psr0cl | |- ( ph -> ( D X. { .0. } ) e. B ) |
| 11 | 1 6 9 7 10 8 | psradd | |- ( ph -> ( ( D X. { .0. } ) .+ X ) = ( ( D X. { .0. } ) oF ( +g ` R ) X ) ) |
| 12 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 13 | 4 12 | rabex2 | |- D e. _V |
| 14 | 13 | a1i | |- ( ph -> D e. _V ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 1 15 4 6 8 | psrelbas | |- ( ph -> X : D --> ( Base ` R ) ) |
| 17 | 5 | fvexi | |- .0. e. _V |
| 18 | 17 | a1i | |- ( ph -> .0. e. _V ) |
| 19 | 15 9 5 | grplid | |- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) |
| 20 | 3 19 | sylan | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) |
| 21 | 14 16 18 20 | caofid0l | |- ( ph -> ( ( D X. { .0. } ) oF ( +g ` R ) X ) = X ) |
| 22 | 11 21 | eqtrd | |- ( ph -> ( ( D X. { .0. } ) .+ X ) = X ) |