This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of transpositions describes a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | |- G = ( SymGrp ` D ) |
|
| psgnval.t | |- T = ran ( pmTrsp ` D ) |
||
| psgnval.n | |- N = ( pmSgn ` D ) |
||
| Assertion | psgneldm2i | |- ( ( D e. V /\ W e. Word T ) -> ( G gsum W ) e. dom N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | |- G = ( SymGrp ` D ) |
|
| 2 | psgnval.t | |- T = ran ( pmTrsp ` D ) |
|
| 3 | psgnval.n | |- N = ( pmSgn ` D ) |
|
| 4 | eqid | |- ( G gsum W ) = ( G gsum W ) |
|
| 5 | oveq2 | |- ( w = W -> ( G gsum w ) = ( G gsum W ) ) |
|
| 6 | 5 | rspceeqv | |- ( ( W e. Word T /\ ( G gsum W ) = ( G gsum W ) ) -> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) |
| 7 | 4 6 | mpan2 | |- ( W e. Word T -> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) |
| 8 | 1 2 3 | psgneldm2 | |- ( D e. V -> ( ( G gsum W ) e. dom N <-> E. w e. Word T ( G gsum W ) = ( G gsum w ) ) ) |
| 9 | 8 | biimpar | |- ( ( D e. V /\ E. w e. Word T ( G gsum W ) = ( G gsum w ) ) -> ( G gsum W ) e. dom N ) |
| 10 | 7 9 | sylan2 | |- ( ( D e. V /\ W e. Word T ) -> ( G gsum W ) e. dom N ) |