This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in MaedaMaeda p. 68 and part of Theorem 16.4 in MaedaMaeda p. 69. (Contributed by NM, 1-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ps1.l | |- .<_ = ( le ` K ) |
|
| ps1.j | |- .\/ = ( join ` K ) |
||
| ps1.a | |- A = ( Atoms ` K ) |
||
| Assertion | ps-2 | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ps1.l | |- .<_ = ( le ` K ) |
|
| 2 | ps1.j | |- .\/ = ( join ` K ) |
|
| 3 | ps1.a | |- A = ( Atoms ` K ) |
|
| 4 | simpl21 | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P e. A ) |
|
| 5 | simp1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. HL ) |
|
| 6 | simp21 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. A ) |
|
| 7 | simp23 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. A ) |
|
| 8 | 1 2 3 | hlatlej1 | |- ( ( K e. HL /\ P e. A /\ R e. A ) -> P .<_ ( P .\/ R ) ) |
| 9 | 5 6 7 8 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ R ) ) |
| 10 | 9 | adantr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( P .\/ R ) ) |
| 11 | simp3r | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. A ) |
|
| 12 | 1 2 3 | hlatlej1 | |- ( ( K e. HL /\ P e. A /\ T e. A ) -> P .<_ ( P .\/ T ) ) |
| 13 | 5 6 11 12 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P .<_ ( P .\/ T ) ) |
| 14 | oveq1 | |- ( S = P -> ( S .\/ T ) = ( P .\/ T ) ) |
|
| 15 | 14 | breq2d | |- ( S = P -> ( P .<_ ( S .\/ T ) <-> P .<_ ( P .\/ T ) ) ) |
| 16 | 13 15 | syl5ibrcom | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S = P -> P .<_ ( S .\/ T ) ) ) |
| 17 | 16 | imp | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> P .<_ ( S .\/ T ) ) |
| 18 | breq1 | |- ( u = P -> ( u .<_ ( P .\/ R ) <-> P .<_ ( P .\/ R ) ) ) |
|
| 19 | breq1 | |- ( u = P -> ( u .<_ ( S .\/ T ) <-> P .<_ ( S .\/ T ) ) ) |
|
| 20 | 18 19 | anbi12d | |- ( u = P -> ( ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) <-> ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) ) |
| 21 | 20 | rspcev | |- ( ( P e. A /\ ( P .<_ ( P .\/ R ) /\ P .<_ ( S .\/ T ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| 22 | 4 10 17 21 | syl12anc | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| 23 | 22 | a1d | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S = P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 24 | hlop | |- ( K e. HL -> K e. OP ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. OP ) |
| 26 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 27 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 28 | 26 27 | op0cl | |- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
| 29 | 25 28 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) e. ( Base ` K ) ) |
| 30 | 26 3 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 31 | 6 30 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. ( Base ` K ) ) |
| 32 | eqid | |- ( |
|
| 33 | 27 32 3 | atcvr0 | |- ( ( K e. HL /\ P e. A ) -> ( 0. ` K ) ( |
| 34 | 5 6 33 | syl2anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( |
| 35 | eqid | |- ( lt ` K ) = ( lt ` K ) |
|
| 36 | 26 35 32 | cvrlt | |- ( ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) /\ ( 0. ` K ) ( |
| 37 | 5 29 31 34 36 | syl31anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) P ) |
| 38 | hlpos | |- ( K e. HL -> K e. Poset ) |
|
| 39 | 38 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Poset ) |
| 40 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 41 | 40 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Lat ) |
| 42 | 26 3 | atbase | |- ( R e. A -> R e. ( Base ` K ) ) |
| 43 | 7 42 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> R e. ( Base ` K ) ) |
| 44 | 26 2 | latjcl | |- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 45 | 41 31 43 44 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 46 | 26 1 35 | pltletr | |- ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) |
| 47 | 39 29 31 45 46 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( 0. ` K ) ( lt ` K ) P /\ P .<_ ( P .\/ R ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) ) |
| 48 | 37 9 47 | mp2and | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) ( lt ` K ) ( P .\/ R ) ) |
| 49 | 35 | pltne | |- ( ( K e. HL /\ ( 0. ` K ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) |
| 50 | 5 29 45 49 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( 0. ` K ) ( lt ` K ) ( P .\/ R ) -> ( 0. ` K ) =/= ( P .\/ R ) ) ) |
| 51 | 48 50 | mpd | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( 0. ` K ) =/= ( P .\/ R ) ) |
| 52 | 51 | necomd | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) |
| 53 | 52 | adantr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( P .\/ R ) =/= ( 0. ` K ) ) |
| 54 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 55 | 54 | 3ad2ant1 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. AtLat ) |
| 56 | simp3l | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. A ) |
|
| 57 | 1 3 | atncmp | |- ( ( K e. AtLat /\ S e. A /\ P e. A ) -> ( -. S .<_ P <-> S =/= P ) ) |
| 58 | 55 56 6 57 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P <-> S =/= P ) ) |
| 59 | simp22 | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. A ) |
|
| 60 | 26 1 2 3 | hlexch1 | |- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) /\ -. S .<_ P ) -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) |
| 61 | 60 | 3expia | |- ( ( K e. HL /\ ( S e. A /\ Q e. A /\ P e. ( Base ` K ) ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
| 62 | 5 56 59 31 61 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. S .<_ P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
| 63 | 58 62 | sylbird | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S =/= P -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) ) ) |
| 64 | 63 | imp32 | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> Q .<_ ( P .\/ S ) ) |
| 65 | 26 3 | atbase | |- ( Q e. A -> Q e. ( Base ` K ) ) |
| 66 | 59 65 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. ( Base ` K ) ) |
| 67 | 26 3 | atbase | |- ( S e. A -> S e. ( Base ` K ) ) |
| 68 | 56 67 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. ( Base ` K ) ) |
| 69 | 26 2 | latjcl | |- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 70 | 41 31 68 69 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
| 71 | 26 1 2 | latjlej1 | |- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 72 | 41 66 70 43 71 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 73 | 72 | adantr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .<_ ( P .\/ S ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 74 | 64 73 | mpd | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ S .<_ ( P .\/ Q ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) |
| 75 | 74 | adantrrr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) |
| 76 | 26 3 | atbase | |- ( T e. A -> T e. ( Base ` K ) ) |
| 77 | 11 76 | syl | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. ( Base ` K ) ) |
| 78 | 26 2 | latjcl | |- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 79 | 41 66 43 78 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
| 80 | 26 2 | latjcl | |- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) |
| 81 | 41 70 43 80 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) |
| 82 | 26 1 | lattr | |- ( ( K e. Lat /\ ( T e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( P .\/ S ) .\/ R ) e. ( Base ` K ) ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 83 | 41 77 79 81 82 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( T .<_ ( Q .\/ R ) /\ ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 84 | 83 | expdimp | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ T .<_ ( Q .\/ R ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 85 | 84 | adantrl | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 86 | 85 | adantrl | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( Q .\/ R ) .<_ ( ( P .\/ S ) .\/ R ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) ) |
| 87 | 75 86 | mpd | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ S ) .\/ R ) ) |
| 88 | 2 3 | hlatj32 | |- ( ( K e. HL /\ ( P e. A /\ S e. A /\ R e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) |
| 89 | 5 6 56 7 88 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ S ) .\/ R ) = ( ( P .\/ R ) .\/ S ) ) |
| 90 | 89 | breq2d | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 91 | 90 | adantr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( T .<_ ( ( P .\/ S ) .\/ R ) <-> T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 92 | 87 91 | mpbid | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> T .<_ ( ( P .\/ R ) .\/ S ) ) |
| 93 | 53 92 | jca | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 94 | 93 | adantrrl | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) |
| 95 | 94 | ex | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) ) ) |
| 96 | 26 1 2 27 3 | cvrat4 | |- ( ( K e. HL /\ ( ( P .\/ R ) e. ( Base ` K ) /\ T e. A /\ S e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
| 97 | 5 45 11 56 96 | syl13anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ R ) =/= ( 0. ` K ) /\ T .<_ ( ( P .\/ R ) .\/ S ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
| 98 | 95 97 | syld | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( S =/= P /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) ) |
| 99 | 98 | impl | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) |
| 100 | 99 | adantrlr | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) ) |
| 101 | 1 3 | atncmp | |- ( ( K e. AtLat /\ T e. A /\ S e. A ) -> ( -. T .<_ S <-> T =/= S ) ) |
| 102 | 55 11 56 101 | syl3anc | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> T =/= S ) ) |
| 103 | necom | |- ( T =/= S <-> S =/= T ) |
|
| 104 | 102 103 | bitrdi | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( -. T .<_ S <-> S =/= T ) ) |
| 105 | 104 | adantr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S <-> S =/= T ) ) |
| 106 | simpl1 | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> K e. HL ) |
|
| 107 | simpl3r | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> T e. A ) |
|
| 108 | simpr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> u e. A ) |
|
| 109 | 68 | adantr | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> S e. ( Base ` K ) ) |
| 110 | 26 1 2 3 | hlexch1 | |- ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) /\ -. T .<_ S ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
| 111 | 110 | 3expia | |- ( ( K e. HL /\ ( T e. A /\ u e. A /\ S e. ( Base ` K ) ) ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
| 112 | 106 107 108 109 111 | syl13anc | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( -. T .<_ S -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
| 113 | 105 112 | sylbird | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) -> ( S =/= T -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) ) |
| 114 | 113 | imp | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ u e. A ) /\ S =/= T ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
| 115 | 114 | an32s | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( T .<_ ( S .\/ u ) -> u .<_ ( S .\/ T ) ) ) |
| 116 | 115 | anim2d | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) /\ u e. A ) -> ( ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 117 | 116 | reximdva | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= T ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 118 | 117 | ad2ant2rl | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 119 | 118 | adantrr | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> ( E. u e. A ( u .<_ ( P .\/ R ) /\ T .<_ ( S .\/ u ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 120 | 100 119 | mpd | |- ( ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |
| 121 | 120 | ex | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ S =/= P ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 122 | 23 121 | pm2.61dane | |- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) ) |
| 123 | 122 | imp | |- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A ) ) /\ ( ( -. P .<_ ( Q .\/ R ) /\ S =/= T ) /\ ( S .<_ ( P .\/ Q ) /\ T .<_ ( Q .\/ R ) ) ) ) -> E. u e. A ( u .<_ ( P .\/ R ) /\ u .<_ ( S .\/ T ) ) ) |