This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transitive law for chained "less than" and "less than or equal to". ( psssstr analog.) (Contributed by NM, 2-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltletr.b | |- B = ( Base ` K ) |
|
| pltletr.l | |- .<_ = ( le ` K ) |
||
| pltletr.s | |- .< = ( lt ` K ) |
||
| Assertion | pltletr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .<_ Z ) -> X .< Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltletr.b | |- B = ( Base ` K ) |
|
| 2 | pltletr.l | |- .<_ = ( le ` K ) |
|
| 3 | pltletr.s | |- .< = ( lt ` K ) |
|
| 4 | 1 2 3 | pleval2 | |- ( ( K e. Poset /\ Y e. B /\ Z e. B ) -> ( Y .<_ Z <-> ( Y .< Z \/ Y = Z ) ) ) |
| 5 | 4 | 3adant3r1 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .<_ Z <-> ( Y .< Z \/ Y = Z ) ) ) |
| 6 | 5 | adantr | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .< Y ) -> ( Y .<_ Z <-> ( Y .< Z \/ Y = Z ) ) ) |
| 7 | 1 3 | plttr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X .< Z ) ) |
| 8 | 7 | expdimp | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .< Y ) -> ( Y .< Z -> X .< Z ) ) |
| 9 | breq2 | |- ( Y = Z -> ( X .< Y <-> X .< Z ) ) |
|
| 10 | 9 | biimpcd | |- ( X .< Y -> ( Y = Z -> X .< Z ) ) |
| 11 | 10 | adantl | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .< Y ) -> ( Y = Z -> X .< Z ) ) |
| 12 | 8 11 | jaod | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .< Y ) -> ( ( Y .< Z \/ Y = Z ) -> X .< Z ) ) |
| 13 | 6 12 | sylbid | |- ( ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) /\ X .< Y ) -> ( Y .<_ Z -> X .< Z ) ) |
| 14 | 13 | expimpd | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .<_ Z ) -> X .< Z ) ) |