This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem hlpos

Description: A Hilbert lattice is a poset. (Contributed by NM, 20-Oct-2011)

Ref Expression
Assertion hlpos
|- ( K e. HL -> K e. Poset )

Proof

Step Hyp Ref Expression
1 hllat
 |-  ( K e. HL -> K e. Lat )
2 latpos
 |-  ( K e. Lat -> K e. Poset )
3 1 2 syl
 |-  ( K e. HL -> K e. Poset )