This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc . See prstchom2 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| prstchom.l | |- ( ph -> .<_ = ( le ` C ) ) |
||
| prstchom.e | |- ( ph -> H = ( Hom ` C ) ) |
||
| Assertion | prstchom2ALT | |- ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | prstchom.l | |- ( ph -> .<_ = ( le ` C ) ) |
|
| 4 | prstchom.e | |- ( ph -> H = ( Hom ` C ) ) |
|
| 5 | ovex | |- ( X H Y ) e. _V |
|
| 6 | 1 2 3 | prstchomval | |- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |
| 7 | 4 6 | eqtr4d | |- ( ph -> H = ( .<_ X. { 1o } ) ) |
| 8 | 1oex | |- 1o e. _V |
|
| 9 | 8 | a1i | |- ( ph -> 1o e. _V ) |
| 10 | 1n0 | |- 1o =/= (/) |
|
| 11 | 10 | a1i | |- ( ph -> 1o =/= (/) ) |
| 12 | 7 9 11 | fvconstr | |- ( ph -> ( X .<_ Y <-> ( X H Y ) = 1o ) ) |
| 13 | 12 | biimpa | |- ( ( ph /\ X .<_ Y ) -> ( X H Y ) = 1o ) |
| 14 | eqeng | |- ( ( X H Y ) e. _V -> ( ( X H Y ) = 1o -> ( X H Y ) ~~ 1o ) ) |
|
| 15 | 5 13 14 | mpsyl | |- ( ( ph /\ X .<_ Y ) -> ( X H Y ) ~~ 1o ) |
| 16 | euen1b | |- ( ( X H Y ) ~~ 1o <-> E! f f e. ( X H Y ) ) |
|
| 17 | 15 16 | sylib | |- ( ( ph /\ X .<_ Y ) -> E! f f e. ( X H Y ) ) |
| 18 | euex | |- ( E! f f e. ( X H Y ) -> E. f f e. ( X H Y ) ) |
|
| 19 | n0 | |- ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) ) |
|
| 20 | 18 19 | sylibr | |- ( E! f f e. ( X H Y ) -> ( X H Y ) =/= (/) ) |
| 21 | 7 9 11 | fvconstrn0 | |- ( ph -> ( X .<_ Y <-> ( X H Y ) =/= (/) ) ) |
| 22 | 21 | biimpar | |- ( ( ph /\ ( X H Y ) =/= (/) ) -> X .<_ Y ) |
| 23 | 20 22 | sylan2 | |- ( ( ph /\ E! f f e. ( X H Y ) ) -> X .<_ Y ) |
| 24 | 17 23 | impbida | |- ( ph -> ( X .<_ Y <-> E! f f e. ( X H Y ) ) ) |