This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the constructed category are dependent on the preorder. This proof depends on the definition df-prstc . See prstchom2 for a version that does not depend on the definition. (Contributed by Zhi Wang, 20-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ||
| prstcnid.k | |||
| prstchom.l | |||
| prstchom.e | |||
| Assertion | prstchom2ALT |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ||
| 2 | prstcnid.k | ||
| 3 | prstchom.l | ||
| 4 | prstchom.e | ||
| 5 | ovex | ||
| 6 | 1 2 3 | prstchomval | |
| 7 | 4 6 | eqtr4d | |
| 8 | 1oex | ||
| 9 | 8 | a1i | |
| 10 | 1n0 | ||
| 11 | 10 | a1i | |
| 12 | 7 9 11 | fvconstr | |
| 13 | 12 | biimpa | |
| 14 | eqeng | ||
| 15 | 5 13 14 | mpsyl | |
| 16 | euen1b | ||
| 17 | 15 16 | sylib | |
| 18 | euex | ||
| 19 | n0 | ||
| 20 | 18 19 | sylibr | |
| 21 | 7 9 11 | fvconstrn0 | |
| 22 | 21 | biimpar | |
| 23 | 20 22 | sylan2 | |
| 24 | 17 23 | impbida |